Материалы для производства современных шин. Резина и ее применение

Технология производства шин начинается с ее разработки посредством специальной компьютерной программы рисующей различные модификации протектора и профиля шины. С помощью программы просчитывается поведение каждого из вариантов покрышки на дороге в различных ситуациях. После чего, те из шин, которые показали наилучшие результаты в моделированных дорожных тестах, нарезаются вручную на станке и проходят тестирования в реальных дорожных условиях. Затем технические показатели каждой тестируемой шины сравниваются с лучшими показателями уже существующих покрышек аналогичного класса, по необходимости проходят доводку и запускаются изделие в серийное производство.

Этапы производства автомобильных шин

1. Производство резиновой смеси

Первый этап создания любой покрышки заключается в изготовлении резиновой смеси, состав которой у каждой компании-производителя индивидуальный и хранимый в строгом секрете. Обусловливается это тем, что именно от качества резины шины зависят такие ее технические характеристики, как:

  • уровень сцепления с дорожным полотном;
  • надежность;
  • рабочий ресурс.

Сырье и расходные материалы

Технология производства шин требует наличия множества различных компонентов, материалов и химических соединений без которых невозможно само существование автомобильных покрышек. В данной статье мы перечислим лишь самые основные из этих компонентов.

Все это достигается благодаря работе химиков, подбирающих, комбинирующих компоненты и их содержание в резине в соответствии с собственным опытом и компьютерными данными. Как правило, именно от правильной дозировки компонентов зависит качество резины, так как ее состав ни для кого не секрет и включает в себя следующие компоненты:

  • каучук, составляющий основу резиновой смеси, который может быть как синтетическим, так и более дорогостоящим изопреновым. Как показывает практика, российский каучук считается лучшим в мире и по сей день используется самыми известными иностранными компаниями-производителями для изготовления своей продукции;
  • промышленная сажа, она же технический углерод, придающая резине характерный цвет, и отвечающая за ее прочность и износостойкость, так как именно сажа выполняет молекулярное соединение в процессе вулканизации;
  • кремниевая кислота, являющаяся аналогом сажи в изготовлении шин зарубежными производителями и повышающая уровень сцепления покрышки с мокрым дорожным полотном;
  • масла и смолы, являющиеся вспомогательными компонентами и выполняющими роль смягчителей резины.
  • вулканизирующие агенты, в частности сера и вулканизационные активаторы.

2.

Производство компонентов шины

Технология производства шин предусматривает такой этап производства как изготовление компонентов шины, представляющий собой несколько таких параллельных процессов как:

3. Сборка автомобильной покрышки и вулканизация

Сборка шины является третьим этапом производства и выполняется на сборочном барабане методом последовательного наложения поверх друг друга слоев каркаса, борта и протектора с боковинами шины, после чего следует процедура вулканизации.

Технология производства автомобильных шин, видео-обзор:

Другие похожие статьи на Технология производства автомобильных шин

Производство формовых РТИ осуществляется на оборудовании для прессования, с помощью которого вулканизированную резину преобразовывают в детали.

Гидравлический пресс является основным типом оборудования для изготовления деталей из резины. Принцип действия гидравлического пресса состоит в том, что жидкость, находящаяся под давлением и заключенная в замкнутый сосуд, оказывает одинаковое давление на стенки сосуда.

Попадая в рабочий цилиндр пресса, и заполняя его, жидкость с одинаковой силой давит на дно цилиндра, его стенки, а также на торцевую поверхность плунжера, вставленного в цилиндр.

Гидравлические прессы для РТИ представляют собой оборудование, в котором рабочий процесс осуществляется благодаря жидкости, находящейся под давлением.

Изделия, изготовленные формовым способом широко используются на приборо- и машиностроительных предприятиях, где постоянно производится вырезка деталей из сырой и листовой резины, которая подвергается вулканизации и прессованию.

Процесс иготовления НА ГИДРАВЛИЧЕСКИХ ПРЕССАХ.

  1. Сначала осуществляется подготовка к работе, т.е. пресс-формы подвергают нагреву до 150 ± 5°, а затем они смазываются специальным раствором.
  2. После сушки и смазывания пресс-форма готова к укладке арматуры и сырой резины. Если во время прессования задействованы открытые пресс-формы, то арматура помещается в гнёзда, а резина занимает оставшееся место. При использовании литьевых форм, арматура по-прежнему укладывается в них, а для сырой резины отведена загрузочная камера.
  3. Для прессования армированных деталей необходимо удельное давление в 50-60 МПа, для не армированных достаточно - 25-30 МПа.
  4. Вулканизация заключается в выдержке резиновой заготовки и арматуры на прессе на протяжении 0,5-1 ч, при этом температура должна быть не меньше 145 ± 3°. Её продолжительность, а также рабочую температуру необходимо подобрать опытным или экспериментальным путём, так как эти величины зависят от конфигурации и толщины стенок детали, а также марки обрабатываемой резины.
  5. Завершив операцию вулканизации необходимо снять пресс-форму с пресса, разобрать, вынуть готовую деталь, почистить рабочую оснастку, поместить в неё новую арматуру с сырой резиной для изготовления следующей детали.
  6. Для обрезки образовавшегося облоя используются специальные ножницы или просечки. Обязательно все детали проверяются специалистами отдела технического контроля (ОТК).

Что такое каучук

Кроме сложных веществ наподобие полиэтиленов, представляющих из себя высокомолекулярные полимеры, существует класс химических веществ, который образован сопряжёнными диенами.

После процесса полимеризации диенов образуются новые химические вещества, имеющие высокомолекулярную структуру, называемые каучуками .

Каучук был уже известен в конце 15 веке в северной Америке. Именно индейцы в то время использовали его для изготовления обуви, небьющихся вещей и посуды. А получали тогда его из сока растения гевеи, который называли – «слёзы дерева».

Что касается европейцев, то о каучуке узнали впервые только в момент открытия Америки. Именно Кристофор Колумб первым узнал о его свойствах и получении. В Европе каучук долгое время не мог найти себе применение. В 1823 г в первые было предложено использование этого материала для изготовления водонепроницаемых плащей и одежды. Каучуком и органическим растворителем пропитывали ткань, таким образом, ткань приобретала водостойкие свойства. Но, конечно же, был замечен и недостаток, который заключался в том, что ткань, пропитанная каучуком, прилипала в жаркую погоду к коже, а при морозе – растрескивалась.

Отличие каучука и резины

Через 10 лет после первого применения натурального каучука и более детального изучения его химических физических свойств было предложено вводить каучук в оксиды кальция и магния. А ещё через 5 лет после изучения свойств нагретой смеси оксидов свинца и серы с каучуком научились получать резину . Сам процесс превращения каучука в резину назвали вулканизацией .

Конечно же, каучук отличается от резины .

Резина – это «сшиты» полимер, который способен распрямляться и снова сворачиваться при растяжении и при действии механической нагрузки. Резина – это также «сшитые» макромолекулы, которые не способы к кристаллизации при охлаждении и не плавятся при нагревании. Тем самым резина – более универсальный материал, чем каучук, и способен сохранять свой механические и физические свойства про более широком диапазоне температур.

В начале 20 века, когда появился первый автомобиль, спрос на резину значительно возрос. В то же время возрос спрос и на натуральный каучук , так как на тот момент вся резина изготавливалась из сока тропических деревьев. Например, чтобы получить тонну резины, необходимо было обработать почти 3 тонны тропических деревьев, при этом работой было занято одновременно более 5 тысяч человек, причём такую массу резины могли получить только через год.

Поэтому, резина и натуральный каучук считались достаточно дорогим материалом.

Только в конце 20х годов русским учёным Лебедевым С.В. при химической реакции — полимеризации бутадиена-1,3 на натриевом катализаторе были получены образцы первого натрий-бутадиенового синтетического каучука.

Кстати, из курса физики 8-ого класса мы, вероятно, впервые познакомились с эбонитовой палочкой . Но что такое эбонит . Как оказывается, эбонит — это производная от процесса вулканизации каучука : если при вулканизации каучука добавить серу (около 32% от массы), то в результате получается твёрдый материал — этот материал и есть эбонит !

Одним из достаточно дешёвых способов получения бутадиена-1,3, является его получение из этилового спирта. Но только в 30-х годах было налажено промышленное производство каучука в России.

В середине 30-х годов 20 века научились производить сополимеры, представляющие полимеризованный 1,3-бутадиен. Химическая реакция производилась в присутствии стирола или некоторых других химических веществ. Вскоре получаемые сополимеры начали с большими темпами вытеснять каучуки, которые ранее широко использовались для производства шин. Каучук бутадиен-стирольный получил широкое применение для производства шин легковых автомобилей, но для тяжёлого транспорта — грузовых автомобилей и самолётов, использовался натуральный каучук (или изопреновый синтетический).

В середине 20 века после получения нового катализатора Циглера - Натты был получен синтетический каучук , который по своим свойствам эластичности и прочности значительно выше, чем все ранее известные каучуки, — был получен полибутадиен и полиизопрен. Но как оказалось, к общему удивлению полученный синтетический каучук по своим свойствам и строению подобен натуральному каучуку! А к концу 20 века натуральный каучук был почти полностью вытеснен синтетическим.

Свойства каучука

Все хорошо знают, что при нагревании материалы способны расширяться. В физике даже имеются коэффициенты температурного расширения, для каждого взятого материала этот коэффициент свой. Расширению поддаются твёрдые тела, газы, жидкости. Но что, если температура увеличилась на несколько десятков градусов?! Для твёрдых тел изменений мы не почувствуем (хотя они есть!). Что касается высокомолекулярных соединений, например полимеров, их изменение сразу становится заметным, особенно если речь идёт об эластичных полимерах, способных хорошо тянуться. Заметным, да ещё к тому же с совсем обратным эффектом!

Ещё в начале 19 века английские учёные обнаружили, что растянутый жгут из нескольких полосок натурального каучука при нагревании уменьшался (сжимался), а вот при охлаждении — растягивался. Опыт был подтверждён в середине 19 века.

Вы сами с лёгкостью можете повторить этот опыт, подвесив на резиновую ленту грузик. Она растянется под его весом. Потом обдуйте её феном — увидите, как она сожмётся от температуры!

Почему так происходит?! К этому эффекту можно применить принцип Ле Шателье , который гласит, что если воздействовать на систему, находящуюся в равновесии, то это приведёт к изменению равновесия самой системы, а это изменение будет противодействовать внешним силовым факторам. То есть если на растянуть под действием груза жгуты каучука (система в равновесии) подействовать феном (внешнее воздействие), то система выйдет из равновесия (жгут будет сжиматься), причём сжатие — действие направлено в обратную сторону от силы тяжести груза!

При очень резком и сильном растяжении жгута он нагреется (нагрев может на ощупь быть и незаметным), после растяжения система будет стремиться принять равновесное состояние и постепенно охладится до окружающей температуры. Если жгуты каучука также резко сжать — охладится, далее будет нагреваться до равновесной температуры.

Что происходит при деформации каучука?

При проведённых исследованиях оказалось, что с точки зрения термодинамики, никакого изменения внутренней энергии при различных положениях (изгибах) этих каучуковых жгутов не происходит.

А вот если растянуть — то внутренняя энергия увеличивается из-за возрастания скорости движения молекул внутри материала. Из курса физики и термодинамики известно, что изменение скорости движения молекул материала (тот же каучук) отражается на температуре самого материала.

дальнейшем, растянутые жгуты каучука будут постепенно охлаждаться, так как движущиеся молекулы будут отдавать свою энергию, например, рукам и другим молекулам, то есть произойдёт постепенное выравнивание энергии внутри материала между молекулами (энтропия будет близка к нулю).

И вот теперь, когда наш жгут каучука принял температуру окружающей среды, можно снять нагрузку. Что при этом происходит?! В момент снятия нагрузки молекулы каучука ещё имеют низкий уровень внутренней энергии (они же ей поделились при растяжении!). Каучук сжался — с точки зрения физики была совершена работы за счёт собственной энергии, то есть своя внутренняя энергия (тепловая) была затрачена на возврат в исходное положение. Естественно ожидать, что температура должна понизится, — что и происходит на самом деле!

Резина — как уже говорилось, высокоэластичный полимер. Её структура состоит из хаотично расположенных длинных углеродным цепочек. Крепление таких цепочек между собой осуществлено с помощью атомов серы. Углеродные цепочки в нормальном состоянии находятся в скрученном виде, но если резину растянуть, то углеродные цепочки будут раскручиваться.

Можно провести интересный опыт с резиновыми жгутами и колесом. Вместо велосипедных спиц в велосипедном колесе использовать резиновые жгуты. Такое колесо подвесить, чтобы оно могло свободно вращаться. В случае, если все жгуты одинаково растянуты, то втулка в центре колеса будет расположена строго по его оси. А теперь попробуем нагреть горячим воздухом какой-нибудь участок колеса. Мы увидим, что та часть жгутов, которая нагрелась — сожмётся и сместит втулку в свою сторону. При этом произойдёт смещение центра тяжести колеса и соответственно колесо развернётся. После его смещения действию горячего воздуха подвергнутся следующие жгуты, что в свою очередь приведёт к их нагреванию и снова — к повороту колеса. Таким образом, колесо может непрерывно вращаться!

Это опыт подтверждает факт того, что при нагревании каучук и резина будут сжиматься, а при охлаждении — растянутся!

Синтетическая резина

C траница 1

Синтетические резины менее, чем естественные резины, подвержены разбуханию в присутствии масла и большинства растворителей.  

Синтетические резины широко применяют для изготовления уплотнений, препятствующих утечке масла из картеров зубчатых редукторов. Хотя иногда в спецификациях на редукторные масла содержатся требования, ограничивающие величину набухания и других повреждений для определенных марок резины, из которых изготовлены сальники, предсказать поведение этих материалов при разнообразных режимах работы практически невозможно.  

Синтетическая резина хуже естественной по сопротивляемости разрыву, но меньше набухает при соприкосновении с маслом, чем естественная.  

Синтетические резины значительно более устойчивы к действию ультрафиолетовых лучей.

Свет не оказывает заметного влияния на поверхность дерева, но продолжительная эксплуатация деталей, изготовленных из дерева, при облучении их ультрафиолетовыми лучами может привести к некоторым изменениям поверхностных слоев древесины.  

Синтетическая резина СКН-40 (бутадиеннитрильный каучук) также относится к бензостойким материалам и может применяться для облицовкл резервуаров.  

Обычные синтетические резины или смеси буна N, буна S, неопрен, бутил, каучук и натуральная резина обладают характеристиками, позволяющими изготовлять детали формовым способом с использованием стандартного оборудования. Однако разработанные совсем недавно синтетические резины, а также большинство силиконовых материалов, имеют на 3 — 5 % большую усадку, чем стандартные резины. В этих случаях О-образные кольца, отформованные из новых материалов на имеющемся оборудовании, имеют размеры на 3 — 5 % меньше, чем предусмотренные стандартом. Материалы с большой усадкой — это силиконы, витон, фтористые силиконы и полиакрилаты.  

Разрыв синтетической резины происходит значительно легче, чем естественной.  

Марка синтетической резины, которая берется для тканево-резиновых манжет, зависит от рабочей среды и температуры. Наиболее обычными базовыми полимерами являются полихлоро-прен, буна N, буна S, бутил и витон. Полихлоропрен и буна N применяются для уплотнения масел, буна S — для воды, бутил — при уплотнении сложных эфиров фосфорной кислоты. Витон используется в условиях высоких рабочих температур.  

Уплотнения из синтетических резин могут работать в масляной среде при окружных скоростях на поверхности трения до 20 м / сек. Однако применять высокие скорости и температуры без крайней необходимости не рекомендуется, так как это снижает надежность уплотнения.  

Шары из синтетической резины изготавливаются полыми. В корпусе устанавливается клапан /, через который закачивается жидкость с таким расчетом, чтобы диаметр шара превысил на 2 % внутренний диаметр трубы.  

Уплотнения из синтетических резин могут работать при окружных скоростях на поверхности трения до 20 м / сек, а в отдельных случаях и до 25 м / сек. В зависимости от сорта резины они могут быть пригодны также для работы при температурах на поверхности трения выше 150 С. Так, например, манжеты из силиконовой резины допускают при скорости 25 м / сек температуру 180 С.  

Коэффициент трения синтетической резины по металлу обычно увеличивается с увеличением скорости. От чистоты уплотняемой поверхности коэффициент трения зависит мало, но чистота поверхности существенно влияет на износ уплотнителей.  

Резина — продукт вулканизации композиции, содержащей связующее вещество — натуральный или синтетический каучук.
В конструкции современных автомобилей используют несколько сот изделий, выполненных из резины. Это шины, камеры, шланги, уплотнители, герметики, детали для электро- и виброизоляции, приводные ремни и т. д. Их масса составляет до 10 % от общей массы автомобиля.
Широкое применение резиновых изделий в автомобилестроении объясняется их уникальными свойствами:
. эластичностью;
. способностью поглощать ударные нагрузки и вибрацию;
. низкой теплопроводностью и звукопроводностью;
. высокой механической прочностью;
. высокой сопротивляемостью к истиранию;
. высокой электроизоляционной способностью;
. газо- и водонепроницаемостью;
. устойчивостью к агрессивным средам;
. низкой плотностью.
Основное свойство резины — обратимая эластичная деформация — способность многократно изменять свою форму и размеры без разрушения под воздействием сравнительно небольшой внешней нагрузки и вновь возвращаться в первоначальное состояние после снятия этой нагрузки.
Подобным свойством не обладают ни металлы, ни древесина, ни полимеры.
На рис. 1 приведена классификация резины .
Резину получают вулканизацией резиновой смеси, в состав которой входят:
. каучук;
. вулканизирующие агенты;
. ускорители вулканизации;
. активаторы;
. противостарители;
. активные наполнители или усилители;
. неактивные наполнители;
. красители;
. ингредиенты специального назначения.



Рис. 1. .Классификация резин .

Натуральный каучук — природный полимер, представляющий собой непредельный углеводород — изопрен (С5Н8)n.
Натуральный каучук добывают главным образом из млечного сока (латекса) каучуконосных растений, в основном из бразильской гевеи, в котором его содержится до 40 %.
Для выделения каучука латекс обрабатывают уксусной кислотой, под действием которой он свертывается, и каучук легко отделяется. Затем его промывают водой, прокатывают в листы, сушат и коптят для устойчивости против окисления и действия микроорганизмов.
Производство натурального каучука (НК) требует больших затрат и не покрывает промышленных потребностей. Поэтому наибольшее распространение получил синтетический каучук (СК). Свойства СК зависят от строения и состава.
Изопреновый каучук (обозначается СКИ) по своему составу и строению близок к натуральному каучуку, по некоторым показателям уступает ему, а по каким-то превосходит. Резина на основе СКИ отличается газонепроницаемостью, достаточной стойкостью против воздействия многих органических растворителей, масел. Существенные его недостатки — низкая прочность при высоких температурах и низкая озоно- и атмосферостойкость.
Бутадиен-стирольный (СКС) и бутадиен-метилстирольный (СКМС) СК наиболее широко используются в автомобилестроении. Резины на основе этих каучуков имеют хорошие прочностные свойства, высокое сопротивление изнашиванию, газонепроницаемость, морозо- и влагостойкость, однако нестойки при воздействии озона, топлива и масел.
Резина на базе бутадиенового каучука (СКД) эластична, износостойка, имеет хорошие физико-механические свойства при низких температурах, однако существуют трудности при переработке резиновых смесей. Она имеет недостаточно прочную связь с металлокордом при производстве армированных изделий.
Из СК специального назначения бутадиен-нитрильный (СКН) каучук отличается высокой бензомаслостойкостью, сохраняет свои свойства в широком интервале температур, обеспечивает прочную связь с металлами, поэтому применяется для изготовления металлорезиновых изделий, работающих в контакте с нефтепродуктами. Недостаток — быстрое старение.
Резины на основе фторкаучука (СКФ) и акрилатного каучука (АК) обладают очень высокими прочностными свойствами, стойки к воздействию топлив, масел, многих других веществ, высоких температур, однако низкая морозостойкость ограничивает их применение. Комплексом положительных свойств обладают силиконовые каучуки.
Молекулы СК являются полимерными цепями с небольшим числом боковых ответвлений. При нагревании с некоторыми вулканизирующими веществами между молекулами каучука образуются химические связи — «мостики», что резко изменяет механические свойства смеси. Чаще всего в качестве вулканизирующего ингредиента используют серу (1—3 %).
Для ускорения вулканизации в резиновую смесь добавляют ускорители и активаторы.
Чрезвычайно важным ингредиентом резины являются наполнители. Активные наполнители резко усиливают прочностные свойства резины. Чаще всего роль активного наполнителя выполняет технический углерод (сажа). Введение технического углерода делает резину более прочной, повышает износостойкость, упругость, твердость. Неактивные наполнители (мел, асбестовая мука и др.) служат для увеличения объема резиновой смеси, что удешевляет изготовление резины, но ее физико-механических свойств не улучшают (некоторые наполнители даже ухудшают).
Пластификаторы (мягчители) облегчают приготовление резиновой смеси, формование изделий, а также улучшают эластичность резины при низких температурах. В качестве пластификаторов используют высококипящие фракции нефти, каменноугольную смолу, растительные масла, канифоль, синтетические смолы. Для замедления процессов старения резины и увеличения ее ресурса в состав резиновой смеси вводят противостарители (антиокислители, стабилизаторы).
Особая роль отводится армирующим наполнителям. Они не входят в состав резиновой смеси, а вводятся на стадии формования изделия. Текстильная или металлическая арматура снижает нагрузку на резиновое изделие, ограничивает его деформацию. Изготавливают такие армированные резиновые изделия, как шланги, приводные ремни, ленты, автопокрышки, где для усиления прочности используют текстильный и металлический корды.
Подбором соответствующих каучуков, рецептуры резиновой смеси, условий вулканизации создают материалы, имеющие определенные свойства, что позволяет получать изделия, обладающие различными эксплуатационными свойствами, причем устойчиво сохраняющие свои качества продолжительное время и обеспечивающие функциональное назначение деталей и работоспособность узлов и агрегатов.
Из отработавших резинотехнических изделий изготовляют по специальной технологии регенерат, который добавляют в резиновую смесь в качестве заменителя части каучука. Однако резина, в состав которой входит регенерат, не отличается хорошими эксплуатационными свойствами, а потому из нее изготовляют изделия (коврики, ободные ленты), к которым не предъявляют высоких технических требований.

Резиновые материалы и комбинированные резинотехнические изделия невозможно заменить другой продукцией. Уникальное сочетание характеристик и эксплуатационных качеств позволяет использовать такие материалы в сложных рабочих процессах, дополняя устройство машин, станков, приборов и строительных конструкций. Современное производство резины заметно продвинулось технологически, что отразилось и на качестве выпускаемой продукции. Технологи стремятся повышать долговечность, прочность и стойкость изделий к воздействию сторонних факторов.

Из какого сырья делают резину?

Большая часть резиновых материалов получается в результате промышленной обработки синтетических и натуральных каучуковых смесей. Достигается эта обработка посредством сшивки каучуковых молекул химическими связями. Последнее время используется порошкообразное сырье для производства резины, характеристики которого специально рассчитаны на образование литьевых форм. Это готовые композиции на базе жидкого каучука, из которых в том числе выпускают эбонитовые изделия. Сам процесс вулканизации не обходится без специальных активаторов или агентов - это химические вещества, способствующие сохранению оптимальных рабочих качеств смеси. Обычно для данной задачи используют серу. Это компоненты, составляющие основу набора, требуемого для изготовления резины. Но, в зависимости от требуемых эксплуатационных качеств и назначения продукта, технологи вводят производственные этапы, на которых структура изделия обогащается и модифицирующими элементами.

Добавки для модификации резиновых смесей

В процессе изготовления резиновая смесь может наполняться ускорителями, активаторами, агентами вулканизации, смягчителями и другими компонентами. Поэтому вопрос о том, из чего делают резину, в немалой степени определяется вспомогательными добавками. Например, для сохранения структуры материала используют регенераты. С помощью данного наполнителя резиновый продукт может подвергаться вторичной вулканизации. Немалая часть модификаторов не оказывает влияния на конечные технико-эксплуатационные свойства, но играет существенную роль непосредственно в процессе изготовления. Тот же процесс вулканизации корректируют ускорители и замедлители химических реакций.

Отдельную группу добавок представляют пластификаторы, то есть смягчители. Их используют для понижения температуры при вулканизации и диспергирования других ингредиентов состава. И здесь может возникнуть другой вопрос - насколько добавки и сам каучук влияют на химическую безопасность формируемой смеси? То есть из чего делают резину с точки зрения экологической чистоты? Отчасти это действительно опасные для здоровья смеси, которые включают ту же серу, битумы и дибутилфталаты, стеариновые кислоты и т. д. Но часть ингредиентов представляют натуральные вещества - природные смолы, тот же каучук, растительные масла и восковые компоненты. Другое дело, что в разных смесях соотношение вредной синтетики и натуральных ингредиентов может меняться.

Этапы процесса изготовления резиновых изделий

Промышленное изготовление резины начинается с процесса пластификации сырья, то есть каучука. На этом этапе обретается главное качество будущей резины - пластичность. Посредством механической и термической обработки каучук смягчается до определенной степени. Из полученной основы в дальнейшем будет осуществлено производство резины, но перед этим пластифицированная смесь подвергается модификации рассмотренными выше добавками. На этой стадии формируется резиновый состав, в который добавляют серу и другие активные компоненты для улучшения характеристик состава.

Важным этапом перед вулканизацией является и каландрование. По сути, это формование сырой каучуковой смеси, прошедшей обогащение добавками. Выбор способа каландрирования определяет конкретная технология. Производство резины на этом этапе может предполагать также и выполнение экструзии. Если обычное каландрование ставит целью создание простых резиновых форм, то экструзия позволяет выполнять сложные изделия в виде шлангов, кольцевых уплотнителей, протекторов для автомобильных шин и т. д.

Вулканизация как завершающий этап производства

В процессе вулканизации заготовка проходит финальную обработку, благодаря которой изделие получает достаточные для эксплуатации характеристики. Сущность операции заключается в воздействии давления и высокой температуры на модифицированную каучуковую смесь, заключенную в металлическую форму. Сами формы устанавливаются в специальной автоклаве, подключенной к паровому нагревателю. В некоторых сферах производство резины может предусматривать и заливку горячей воды, которая стимулирует процесс распределения давления через текучую среду. Современные предприятия также стремятся к автоматизации этого этапа. Появляются все новые пресс-формы, которые взаимодействуют с подающими пар и воду форсунками на основе компьютерных программ.

Как производятся резинотехнические изделия?

Это комбинированные изделия, которые получаются путем соединения тканевых материалов с каучуковой смесью. В процессе изготовления резинотехнической продукции нередко используется паронит - гибридный материал, получаемый путем соединения термостойкой резины и неорганических наполнителей. Далее заготовка проходит обработку вальцеванием и вулканизацию. Получают резинотехнические изделия и с помощью шприц-машин. В них на заготовки оказывается термическое воздействие, после чего осуществляется пропуск по профилирующей головке.

Оборудование для процессов изготовления резины

Полный производственный цикл осуществляет целая группа машин и агрегатов, выполняющих разные задачи. Один лишь процесс вулканизации обслуживают котлы, прессы, автоклавы, форматоры и другие устройства, обеспечивающие промежуточные операции. Отдельный установки применяют для пластификации - типовая машина такого типа состоит из шипованного ротора и цилиндра. Вращение роторной части производится посредством ручного привода. Не обходится производство резины без варочных камер и каландровых агрегатов, которые осуществляют раскатку каучуковых смесей и термическое воздействие.

Заключение

Процессы изготовления резиновых изделий во многом стандартизированы как в плане механической обработки, так и в части химического воздействия. Но даже при условии использования одинаковых производственных аппаратов характеристики получаемых изделий могут быть разными. Это доказывает и резина отечественного производства, предлагающая разные наборы эксплуатационных свойств. Наибольшую долю резиновой продукции в российском сегменте промышленности занимают автомобильные шины. И в этой нише особенно ярко проявляются способности технологов к гибкой модификации составов в соответствии с жесткими требованиями к конечной продукции.

Резина – эластичный полимерный материал, продукт переработки природного или синтетического изопренового или диенового каучука.

Преобразование каучука в резину происходит путем его вулканизации. При этом линейные молекулы полимера вступают в химическую реакцию с серой, между соседними молекулами образуются сульфидные мостики. Полимер приобретает пространственную структуру. За счет изменения структуры значительно повышаются эластичность, прочность, износоустойчивость и другие технологические характеристики материала.

Достижение наилучшего возможного сочетания механических и физических свойств в процессе изготовления резины известно как оптимум вулканизации.

Технологический процесс производства включает следующие этапы:

  1. образование вулканизационной сети,
  2. этап индукции,
  3. реверсию.

В зависимости от необходимых свойств конечного продукта в реакционную смесь вводят различные добавки: сажу, мел, пластификаторы, смягчители. Для улучшения эксплуатационных качеств готовых резиновых изделий в последнее время все чаще применяются органические добавки, в частности пероксиды и олигоэфиракрилаты.

Различают холодную и горячую вулканизацию. В производстве герметиков используется метод холодной вулканизации при температуре в пределах 20…30 градусов. Горячая вулканизация производится при температурах 140… 300 градусов.

В производстве резины применяются различные катализаторы, которые влияют не только на скорость реакции, но и на качество резины. Чаще всего в промышленности применяются тиазолы и замещенные сульфаниламиды. Сульфаниламиды обеспечивают монолитность изделия, тиазолы повышают устойчивость материала к термоокислительному старению.

Кроме холодной и горячей вулканизации существует способ под названием серная вулканизация, который применяется в производстве резины повышенной износостойкости для изготовления шин и некоторых видов обуви.

Отрасли применения резины

Примерно половина всего объема производства резины предназначается для изготовления шин. Остальное используется в качестве различных видов изоляции, для изготовления деталей различных машин и механизмов, в обувной промышленности, электротехнике, производстве медицинского оборудования, приборостроении и т. д.

Полезные изделия из переработанной резины

Сегодня человечество способно в значительной мере воспроизводить свои потребности в резине. Этот потенциал содержится не просто в отходах, а в отходах, которые некуда девать. Даже богатая природными ресурсами Россия начинает понимать здесь свою выгоду

Резиновая крошка может быть использована для изготовления качественных покрытий, применяемых в самых различных местах, в том числе на даче, детских и спортивных площадках

Опасность отходов

В процессе производства резины в атмосферу попадают оксиды серы, азота, углерода, частицы сажи, резорцин, этилен, формальдегид и ряд других агрессивных и токсичных соединений.

Не меньшую опасность представляют собой и отходы резины, например отслужившие автопокрышки, элементы изоляции и другие резинотехнические изделия. По мере нахождения на открытом воздухе резина постепенно разрушается, выделяя в окружающую среду летучие компоненты и тяжелые металлы .

В местах большого скопления отработанных автопокрышек интенсивно размножаются мышевидные грызуны и некоторые насекомые, которые поселяются в полостях шин. Эти животные являются разносчиками опасных заболеваний а также наносят прямой вред сельскохозяйственному производству и ряду сопредельных с ним отраслей промышленности. Наибольшее количество резиновых отходов есть не что иное, как изношенные шины, это наиболее крупнотоннажный и объемный мусор, поступающий на свалки мира.

Способы утилизации резиновых изделий

В развитых странах все больше внимания уделяется разработке и совершенствованию технологий вторичного использования резиновых изделий, в частности, .

Незначительно изношенные шины подвергаются ремонту путем восстановления протектора. Непригодные для ремонта изделия подлежат утилизации по различным технологиям, которые условно можно разделить на 3 группы:

  1. Методы, не влияющие на физико-химические свойства материала. Это прежде всего грубое дробление отслуживших изделий. Полученная крошка подлежит захоронению либо используется в качестве наполнителя для некоторых видов бетона, асфальта или как сырье для производства резиновой плитки и подобных материалов.
  2. Методы, приводящие к частичному разрушению пространственной структуры материала и частичной деструкции каучука, к которым относится получение шинного регенерата. Регенерат возвращается в цикл шинного производства и заменяет часть первичного сырья.
  3. Термические методы разрушения резины. К этой группе относят пиролиз и сжигание. Более прогрессивным методом термической утилизации является пиролиз, позволяющий получать из отходов резины тепловую и электрическую энергию, ценные компоненты для химической промышленности и минимизировать количество давление на окружающую среду.

Применение продуктов резины в разных отраслях производства позволяет удешевить конечный продукт, уменьшить количество вредных выбросов в атмосферу, почву и воды, а также уменьшить энергоемкость основного производства.

– один из самых ходовых материалов на нашей планете. Она нужна всем и всегда, без нее не двинется с места ни один автомобиль, без нее не будет работать ни одно промышленное предприятие. В этой статье мы рассмотрим процесс создания резины. Вы узнаете, какова технология производства резины и из чего ее делают.

Источники резины и краткий экскурс в историю

Первые резиновые материалы состояли в основном из натурального материала – каучука. Это продукт дерева под названием «каучуконосная гевея», которое растет в дебрях Амазонской низменности. В первые годы существования резины доля каучука доходила до 85–92%! Это немыслимая доля для сегодняшнего дня. Дело в том, что такая резина ничуть не уступала современной, скорее наоборот, превосходила ее по многим параметрам прочности и износостойкости, а затраты на ее производство были намного сегодняшних.

Одно но – из-за растущих потребностей в резине, каучуконосную гевею начали нещадно вырубать, и вскоре некогда многочисленные заросли гевеи стали стремительно исчезать. Стало совершенно очевидно, что необходимо как-то сократить вырубку этих деревьев, иначе человечество останется без резины вовсе. Ведь даже сейчас технология производства резины требует некоторого количества природного каучука, поэтому изрядную долю природного материала пришлось разбавлять многочисленными искусственными заменителями. Их мы сейчас и рассмотрим.

Каучук и химические добавки

Ключевой этап создания резины – вулканизация. Ее производят с помощью специальных синтетических компонентов – активаторов вулканизации. Сама по себе резина без этой процедуры непригодна. Помимо активаторов вулканизации необходимо добавлять вулканизирующие агенты. И только после этого активаторы вулканизации. Дело в том, что без агентов будет невозможно начало вулканизации. После агентов добавляют активаторы. И только после этого возможно начало процесса вулканизации. Вторым по важности компонентом можно назвать регенерат – этот синтетический продукт позволяет проводить процедуру вулканизации еще раз.

К смягчающим компонентам резины (разумеется синтетического, искусственного происхождения) относят противостарители, наполнители и пластификаторы, которые выполняют функцию замены природной пластичности каучука, которого не хватает в резине. Этот компонент придает резине пластичные свойства, которые позволяют ей как стягиваться, так и растягиваться, не трескаясь при этом. Также в резину добавляют различные модификаторы, ароматизированные синтетические смолы и порообразователи. Задача последних состоит в том, чтобы в резине образовывались небольшие пузырьки воздушного пространства, незаметные глазу. Они играют роль своеобразной воздушной подушки, снижая давление на шину при движении автомобиля. Не во всех случаях представляется возможным создать синтетический каучук и использовать его в постоянных целях. Иногда все же приходится прибегать к использованию полностью натуральных каучуков.

Технологический процесс создания резины

Первый и самый важный этап создания резины – вулканизация. Каучуковые молекулы по своей природе очень гибкие, то есть не годятся для грубого использования (езда на машине, к примеру), поэтому необходимо формирование новой сетки (кристаллической решетки). Вулканизация делает каучук твердым, то есть превращает его в материал с иными физическими свойствами – в резину. Сама вулканизация включает в себя несколько этапов:

  1. Формирование новой кристаллической решетки;
  2. Индукцию;
  3. Реверсию.

Технология производства резины подразумевает полное изменение свойств каучука. Прочность каучука, как природного, так и синтезированного, значительно ниже, чем прочность уже готовой вулканизированной резины. Эластичность тоже является одним из самых важных показателей для эксплуатации. Чем менее эластична резина, тем больше она будет трескаться. И дело даже не в эксплуатации. Если неэластичная резина будет просто лежать, она также потрескается, но уже просто от разницы дневных и ночных температур.

Эластичная резина будет стягиваться и растягиваться до того предела, который заложен в нее при создании – чем больше в каучук положили пластификаторов при вулканизации, тем эластичнее будет уже готовая резина. Современная технология производства резины уже не подразумевает участия в процедуре вулканизации натурального каучука, все процессы и принципы химического воздействия основаны на взаимодействии синтетических каучуков с химическими реагентами. Но, правда, не всегда добавки и компоненты бывают исключительно синтетическими.

В зависимости от конечного назначения резины в процессе вулканизации в нее могут добавляться:

  • сажа;
  • ацетилированный ланолин;
  • глицерин.

Виды вулканизации

Наиболее популярными методами создания резины остаются горячая и холодная вулканизация. Горячая вулканизация проводится при температуре от +250 0 С до +290 0 С. Холодная вулканизация дает температуру от +20 0 С до +30 0 С и обычно используется для создания материалов-герметиков. Существует еще и серная вулканизация, которая нужна для создания камер для авто, армейской и туристической обуви и покрышек для велосипедов. В данном случае используются горячая сера и катализаторы, которые помогают ускорить процесс вулканизации.

Процесс производства резины, видео-обзор: