Общие принципы работы аппаратов по утилизации тепла. Основы проектирования и монтажа систем отопления. Для утилизации сбросной теплоты

Так как большое количество денежных средств может быть сэкономлено за счет утилизации теплоты конденсата, перед владельцем любого предприятия, потребляющего пар, рано или поздно встает вопрос:

Каким образом можно утилизировать теплоту конденсата в пароконденсатной системе моего предприятия?

В данном разделе будут рассмотрены типовые способы утилизации теплоты конденсата, которые в той или иной степени могут быть реализованы практически в любой пароконденсатной системе.

Но без детального и всестороннего обследования существующей пароконденсатной системы невозможно сказать однозначно, можно ли применить в данном конкретном случае какой-либо из рассмотренных способов или нет.

Что подразумевается под словосочетанием «утилизация теплоты конденсата»?

Начнём с нескольких основополагающих принципов:

  • Для нагрева какого-либо продукта в теплообменнике до определенной температуры следует использовать насыщенный пар.
  • Температура насыщенного пара должна быть выше температуры нагреваемого продукта на выходе из теплообменного аппарата.
  • Давление пара и температура пара взаимосвязаны, т.е. температура в теплообменнике зависит от давления пара.
  • Энтальпия насыщенного пара складывается из энтальпии воды (теплота конденсата) и теплоты парообразования (скрытая теплота).
  • В подавляющем большинстве случаев теплообменники проектируются для передачи продукту только скрытой теплоты, тогда как образующийся конденсат должен немедленно отводиться из теплообменника.

Конденсат и его теплота теряются безвозвратно, если конденсат попросту сбрасывается в атмосферу и не используется повторно. Даже если конденсат собирается в бак открытого типа и затем используется в качестве питательной воды для котла, то часть теплоты конденсата всё равно теряется вместе с паром вторичного вскипания, который образуется после конденсатоотводчиков и затем уходит в атмосферу из открытого конденсатного бака. Это явление мы рассмотрим ниже.

Утилизация теплоты конденсата в данном контексте означает максимально эффективное использование теплоты, уносимой вместе с конденсатом из теплообменного аппарата.

Для отвода конденсата из теплообменного оборудования применяются конденсатоотводчики, которые одновременно с этим выполняют роль дросселирующего устройства, т.е. на конденсатоотводчиках происходит падение давления, т.е. перепад давления между давлением пара в теплообменном аппарате и давлением конденсата в конденсатной системе.

Точка 1: Вход пара в теплообменный аппарат
Точка 2: Конденсат при температуре насыщения или с небольшим переохлаждением на выходе из теплообменного аппарата или перед конденсатоотводчиком.
Отрезок 1 2: Передача скрытой теплоты парообразования в теплообменном аппарате при постоянном давлении и температуре.
Точка 3: Состояние конденсата после конденсатоотводчика.
Отрезок 2 3: Падение давления – при постоянной энтальпии – от давления перед конденсатоотвочиком (Pv) до давления после конденсатоотводчика (Pg) или от температуры перед конденсатоотводчиком до температуры насыщения.
Точка 4: Конденсат при температуре насыщения после конденсатоотводчика.
Отрезок 3 4: Энергия, высвобождающаяся при падении давления в виде пара вторичного вскипания.
Отрезок 4 5: Остаточная теплота конденсата.
Количество образующегося пара вторичного вскипания может быть рассчитано по следующей формуле:


m расход конденсата [кг/ч]; h"2 энтальпия конденсата перед вскипанием [Ккал/кг или кДж/кг]; h"4 энтальпия конденсата после вскипания [Ккал/кг или кДж/кг]; r теплота парообразования при давлении за конденсатоотводчиком [Ккал/кг или кДж/кг].

Альтернативным способом вычисления количества пара вторичного вскипания может быть использование диаграммы на рис. 69, показывающей зависимость количества пара вторичного вскипания (в кг), образующегося из 1 кг конденсата, от давления перед конденсатоотводчиком (в теплообменнике) и давления после конденсатоотводчика.

Например: избыточное давление перед конденсатоотводчиком – 5 бар, избыточное давление после конденсатоотводчика – 0 бар, количество пара вторичного вскипания 0,11кг/кг, т.е. 11%.

Как мы видим, количество пара вторичного вскипания зависит от перепада давления на конденсатоотводчике и от количества конденсата. Этот факт также объясняет то, почему после правильно работающего конденсатоотводчика образуются «клубы» пара (они особенно видны, когда конденсат после конденсатоотводчика сбрасывается в атмосферу).

Если конденсат отводится в бак открытого типа, то легко можно наблюдать, как пар вторичного вскипания выходит из бака в атмосферу. В этом случае «клубы» пара ещё больше, так как в бак поступает конденсат сразу от нескольких конденсатоотводчиков одновременно.

При низких давлениях удельный объём пара достаточно высок. Невозможно отличить острый пар от пара вторичного вскипания, поэтому иногда даже специалисты путают пар вторичного вскипания с острым паром и делают ошибочные выводы о том, что конденсатоотводчики пропускают острый пар, хотя на самом деле эти конденсатоотводчики работают нормально.


На рис. 70 показан пример образования большого объёма пара вторичного вскипания после конденсатоотводчика: 100 кг/ч конденсата (из пара с давлением 8 бар (изб) образуют 24 м3/ч пара вторичного вскипания, в то время как объем воды после конденсатоотводчика только 0,086 м3/ч.

Этот пример показывает, что оборудование для контроля работы конденсатоотводчиков необходимо устанавливать только перед конденсатоотводчиками, но не после конденсатоотводчиков.

Однако если используются высококачественные конденсатоотводчики, которые гарантируют отличную и безотказную работу, то контроль их состояния в большинстве случаев не требуется. Из нашей широчайшей линейки конденсатоотводчиков GESTRA мы можем предложить Вам надежные и качественные конденсатоотводчики для решения любой задачи.

Из сказанного выше становится понятно, что теплота, содержащаяся в конденсате перед конденсатоотводчиком, после конденсатоотводчика разделяется на пар вторичного вскипания и остаточную теплоту конденсата.

Так как остаточный конденсат и, следовательно, его теплота практически всегда повторно используется (конденсат возвращается обратно в котельную и идёт на подпитку котла), то в данном контексте под утилизацией теплоты конденсата мы понимаем только эффективное использование пара вторичного вскипания.

Можно выделить 4 основных способа эффективной утилизации пара вторичного вскипания:

  1. подтопление теплообменных поверхностей конденсатом;
  2. применение специальных сосудов (сепараторов) для отделения и утилизации пара вторичного вскипания;
  3. установка теплообменника на общем конденсатопроводе;
  4. установка предварительного подогревателя перед основным теплообменным аппаратом.

Способ № 1:

Подтопление теплообменных поверхностей конденсатом

Чтобы предотвратить образование пара вторичного вскипания после конденсатоотводчика, необходимо задерживать конденсат в теплообменнике, т.е. надо подтапливать теплообменные поверхности. Это означает, что часть теплоты конденсата будет передаваться нагреваемому продукту и, таким образом, конденсат будет остывать. Температура конденсата должна быть снижена внутри теплообменника до температуры насыщения (или ниже), соответствующей давлению в конденсатной линии после конденсатоотводчика.

Это означает, что участок трубы, в котором происходит такое охлаждение конденсата, должен быть достаточно длинным, т.е. теплообменникбудетвбольшей или меньшей степени подтоплен конденсатом.

В стандартных теплообменниках такая схема утилизации теплоты конденсата применяется сравнительно редко, так как подтопление теплообменных поверхностей снижает мощность и, следовательно, эффективность теплообменника, а также может приводить к возникновению гидроударов.

Однако в случае со спутниковым обогревом данный способ утилизации теплоты конденсата может быть реализован посредством использования соответствующих конденсатоотводчиков (см. раздел 4.26 «Пароспутники»).

Теплообменники с регулированием «по конденсату» в большинстве случаев работают с частичным подтоплением теплообменных поверхностей конденсатом. В этом случае подтопление поверхностей конденсатом требуется для поддержания температуры продукта постоянной. Однако такая схема регулирования является достаточно инерционной и рекомендуется к применению только на теплообменниках с вертикальными греющими поверхностями и с постоянным режимом работы.

На рис. 71 показан подогреватель топлива, оснащенный регулятором температуры прямого действия, который регулирует расход конденсата в зависимости от температуры продукта на выходе из подогревателя. Конденсатоотводчик предотвращает пролет острого пара в тех случаях, когда регулятор температуры находится в полностью открытом положении (в пусковых режимах или при поломке).

Способ №2:

Применение специальных сосудов (сепараторов) для отделения и утилизации пара вторичного вскипания

Если в пароконденсатной системе завода используется пар различных давлений, то данный способ утилизации теплоты конденсата является оптимальным.

Если всё-таки в пароконденсатной системе завода используется пар одного давления, то необходимо провести детальное обследование данной системы на предмет поиска одного или двух теплообменников, которые могли бы потреблять пар более низкого давления. В подавляющем большинстве случаев такой теплообменник или теплообменники в системе есть. Единственной причиной, по которой все теплообменники в системе потребляют пар одного давления, очень часто является то, что только такой пар и доступен для использования в системе.

Очевидно, что деаэраторы питательной воды в паровых котельных являются потребителями пара низкого давления. В большинстве случаев эти деаэраторы потребляют острый пар сдавлением 0,2-0,5 бар (изб).

Например, пар вторичного вскипания низкого давления можно использовать в системах обогрева помещений.

На рис. 72 показана принципиальная схема пароконденсатной системы с несколькими теплообменниками, потребляющими пар различного давления.

На практике, естественно, потребителей пара может быть намного больше.

В данном случае показана, так называемая, открытая конденсатная система, в которой пар вторичного вскипания уходит из конденсатного бака в атмосферу.

Данная система может быть оптимизирована путём установки сосудов для отделения пара вторичного вскипания между различными группами теплообменников, а также за счет замены конденсатного бака открытого типа конденсатным баком закрытого типа.


На рис. 73 показана закрытая система с тремя отделителями пара вторичного вскипания. Конденсат из теплообменника «16 бар» отводится в отделитель пара вторичного вскипания «5 бар». Пар вторичного вскипания из этого отделителя уходит в теплообменник «5 бар». Если этого пара из отделителя будет недостаточно для теплообменного процесса, то регулятор давления начнёт автоматически открываться и подавать недостающее количество острого пара в теплообменник, тем самым, поддерживая постоянное давление в теплообменнике и в отделителе. Конденсат из отделителя «5 бар» отводится через поплавковый конденсатоотводчик в отделитель пара вторичного вскипания «2 бар». Конденсат из теплообменника «5 бар» также отводится в этот отделитель. Пар вторичного вскипания из отделителя «2 бар» уходит в теплообменник «2 бар». Регулятор давления автоматически подаёт недостающее количество острого пара в теплообменник, поддерживая постоянное давление после себя.

Конденсат из теплообменника «2 бар» и конденсат из отделителя «2 бар» отводятся в отделитель «0,2-0,5 бар». Пар вторичного вскипания, образующийся в этом отделителе, используется для подачи в атмосферный деаэратор. Оставшийся в отделителеконденсатоткачивается насосами в бакпитательной воды.

На отделители пара вторичного вскипания «5 бар» и «2 бар» необходимо установить автоматические воздухоотводчики, так какнеконденсируемые газы (например, воздух), находящиеся в паре, могут значительно ухудшить теплообменные процессы.

В случае реконструкции существующей пароконденсатной системы, например, при переходе от открытой конденсатной системы к закрытой конденсатной системе, необходимо убедиться в том, будет ли пропускной способности существующих конденсатоотводчиков достаточно для работы в новом режиме. Дело в том, что в случае с закрытой конденсатной системой увеличивается противодавление на конденсатоотводчиках. Как результат, перепад давления на этих конденсатоотводчиках уменьшается и, следовательно, снижается их пропускная способность.

Конечно, не всегда требуется использование трех отделителей пара вторичного вскипания. В большинстве случаев будет достаточно одного или двух. На рис. 74 и 75 показаны такие системы.

Если весь пар вторичного вскипания, образующийся в системе, может быть полностью использован в одном теплообменном аппарате, то имеет смысл применить принцип термосифона. См. рис. 75. Единственное требование - теплообменный аппарат должен быть расположен вышеотделителя пара вторичного вскипания.

В соответствии с газовыми законами пар вторичного вскипания будет подниматься наверх в теплообменник «2 бар». Конденсат же под действием силы тяжести будет стекать вниз в отделитель пара вторичного вскипания.

При этом конденсат должен входить в отделитель ниже уровня воды, чтобы не препятствовать подъему пара наверх.



Для обеспечения нормальной термосифонной циркуляции необходимо эффективно отводить воздух и другие неконденсируемые газы из этого циркуляционного контура. Принцип термосифона можно реализовать только, если теплообменный аппарат работает на постоянном давлении.

Какое-либо регулирование работы теплообменного аппарата по «паровой стороне» невозможно.

Способ №3:

Утилизация теплоты конденсата посредством установки теплообменника на общем конденсатопроводе.

Принципиальная схема показана на рис. 76.

Оптимальная температура продукта поддерживается посредством 3-х ходового регулятора температуры. Данный клапан предотвращает чрезмерное повышение давления в общем конденсатопроводе. Для нормальной работы данной системы необходимо, чтобы количество теплоты пароконденсатной смеси было больше количества теплоты, требуемого для нагрева продукта в теплообменнике. Избыточное количество пароконденсатной смеси отводится в конденсатный бак ниже уровня воды. Эта пароконденсатная смесь используется для нагрева умягченной воды. Для предотвращения гидроударов в конденсатном баке пароконденсатная смесь должна подаваться в бак ниже уровня воды и обязательно через барботажную трубу. Суммарная площадь всех отверстий в барботажной трубе должна быть равна площади поперечного сечения этой трубы.

Конец барботажной трубы должен быть заглушен. В трубе выше уровня воды (внутри бака) необходимо предусмотреть небольшое отверстие, которое при остановках системы предотвращает всасывание конденсата в барботажную трубу. Такая система обеспечивает максимальную утилизацию пара вторичного вскипания.


Способ№4:

Утилизация теплоты конденсата посредством установки предварительного подогревателя передосновным теплообменным аппаратом.

Если утилизация пара вторичного вскипания непосредственно в основном теплообменном аппарате невозможна, то перед данным теплообменным аппаратом можно установить предварительный подогреватель.

Теплообменный аппарат используется для нагрева продукта от начальной температуры до конечной температуры.

Данный теплообменный процесс требует определенного количества пара. Однако, если «вторичное тепло» используется для предварительного подогрева продукта, то для достижения конечной температуры продукта в основном теплообменнике потребуется меньшее количество пара.

Предварительный подогрев продукта можно осуществлять посредством нерегулируемой подачи пара вторичного вскипания в предварительный подогреватель (если возможно, то с использованием термосифона, см. рис. 75) или, например, в небольших системах посредством подачи пароконденсатной смеси напрямую в предварительный подогреватель (рис. 77)

Основной теплообменный аппарат нагревает продукт - в нашем примере вода - до требуемой конечной температуры. Если пароконденсатная система достаточно большая и протяженная, то, естественно, можно использовать несколько предварительных подогревателей в различных точках системы для последовательного подогрева продукта.

В случае с большими теплообменными аппаратами рекомендуется проводить утилизацию пара вторичного вскипания и части теплоты конденсата в предварительных подогревателях, которые могут являться составными элементами этих теплообменных аппаратов, любо могут устанавливаться в непосредственной близости от этих теплообменных аппаратов (сбоку или снизу).


На рис. 78 схематически показан калорифер с предварительным подогревателем, установленным на входе воздуха в калорифер.

Смесь конденсата и пара вторичного вскипания от различных греющих секций уходит в конденсатный бак через предварительный подогреватель. Скрытая теплота парообразования вторичного пара и часть теплоты конденсата передаются холодному воздуху, поступающему в калорифер. Конденсат после предварительного подогревателя стекает в конденсатный бак относительно холодным и без пара вторичного вскипания.


В примере на рис. 79 показан предварительный подогреватель, установленный под основным теплообменным аппаратом.

Конденсат из основного теплообменного аппарата самотёком поступает в предварительный подогреватель и отдает в нём свою теплоту продукту. Отвод охлажденного конденсата из предварительного подогревателя осуществляется посредством поплавкового конденсатоотводчика. Между предварительным подогревателем и поплавковым конденсатоотводчиком должен быть перегиб трубопровода, причем, верхняя точка перегибадолжна находиться выше предварительного подогревателя.

Для поддержания постоянного уровня до и после предварительного подогревателя необходимо установить трубку для выравнивания давления. Данная трубка должна соединять самую верхнюю точку участка трубопровода между предварительным подогревателем и поплавковым конденсатоотводчиком и трубопровод подачи пара в основной теплообменный аппарат. В этом случае предварительный подогреватель всегда будет затоплен конденсатом. Давление в основном теплообменном аппарате и в предварительном подогревателе будет одинаковым (в данном случае мы пренебрегаем статическим давлением столба жидкости междуосновным теплообменным аппаратом и предварительным подогревателем).

На выходе из основного теплообменного аппарата необходимо установить автоматический воздухоотводчик.

Данный способ взаимного расположения основного теплообменного аппарата и предварительного подогревателя имеет некоторые преимущества по сравнению со способом, показанным на Рис. 78 (предварительный подогреватель расположен сбоку от основного теплообменного аппарата): в качестве греющей среды в предварительном подогревателе используется только вода; входная температура продукта выше; диаметры трубопроводов могут быть уменьшены; практически полностью исключаются проблемы, связанные с гидроударами, кавитацией и эрозией в трубопроводах (данные проблемы характерны для двухфазных потоков пар/конденсат).

Площадь греющих поверхностей предварительного подогревателя рассчитывается, исходя из доступного для утилизации количества «вторичного тепла» и требуемой выходной температуры конденсата.

Если Вы хотите улучшить тепловой баланс Вашего предприятия посредством снижения тепловых потерь, то специалисты GESTRA всегда готовы обсудить с Вами существующие проблемы и разработать детальный план мероприятий, удовлетворяющий конкретно. Ваши требования. Естественно, мы также поставим Вам всё необходимое оборудование и проведем шеф-монтажные и пуско-наладочные работы.

Затраты теплоты на подогрев санитарной нормы приточного наружного воздуха при современных методах теплозащиты ограждающих конструкций составляют в жилых домах до 80 % тепловой нагрузки на отопительные приборы, а в общественно-административных зданиях - более 90%. Поэтому энергосберегающие системы отопления в современных конструкциях зданий могут быть созданы только при условии

утилизации теплоты вытяжного воздуха на нагрев санитарной нормы приточного наружного воздуха.

Также успешен опыт применения в административном здании в Москве установки утилизации с насосной циркуляцией промежуточного теплоносителя - антифриза.

При расположении приточных и вытяжных агрегатов на расстоянии более 30 м друг от друга система утилизации с насосной циркуляцией антифриза является наиболее рациональной и экономичной. В случае расположения их рядом возможно еще более эффективное решение. Так в климатических районах с мягкими зимами, когда температура наружного воздуха не опускаются ниже -7 °С, широко применяются пластинчатые теплоутилизаторы.

На рис. 1 показана конструктивная схема пластинчатого рекуперативного (теплоотдача осуществляется через разделительную стенку) теплоутилизационного теплообменника. Здесь показан (рис. 1, а) «воздухо-воздушный» теплоутилизатор, собранный из пластинчатых каналов, которые могут изготавливаться из тонкой листовой оцинкованной стали, алюминия и др.

Рисунок 1. а - пластинчатые каналы, в которых сверху над разделительными стенками каналов поступает вытяжной воздух L y , а горизонтально-приточный наружный воздух L п.н; б - трубчатые каналы, в которых сверху в трубках проходит вытяжной воздух L y , а горизонтально в межтрубном пространстве проходит приточный наружный воздух L п.н

Пластинчатые каналы заключаются в кожух, имеющий фланцы для присоединения к приточным и вытяжным воздуховодам.

На рис. 1, б показан «воздухо-воздушный» теплообменник из трубчатых элементов, которые могут быть также изготовлены из алюминия, оцинкованной стали, пластмассы, стекла и др. Трубы закрепляются в верхние и нижние трубные решетки, что формирует каналы для прохода вытяжного воздуха. Боковые стенки и трубные решетки образуют каркас теплообменника, с открытыми фасадными сечениями, которые присоединяются к воздуховоду поступления приточного наружного воздуха L п.н.

Благодаря развитой поверхности каналов и устройства в них турбулизирующих воздух насадок в таких «воздухо-воздушных» теплообменниках достигается высокая теплотехническая эффективность θ t п.н (до 0,75), и это является главным достоинством таких аппаратов.

Недостатком этих рекуператоров является необходимость предподогрева приточного наружного воздуха в электрокалориферах до температуры не ниже -7 °С (во избежание замерзания конденсата на стороне влажного вытяжного воздуха).

На рис. 2 показана конструктивная схема приточно-вытяжного агрегата с пластинчатым утилизатором теплоты вытяжного воздуха L у на нагрев приточного наружного воздуха L п.н. Приточный и вытяжной агрегаты выполняются в едином корпусе. Первыми на входе приточного наружного L п.н и удаляемого вытяжного L у воздуха установлены фильтры 1 и 4. Оба очищенных потока воздуха от работы приточного 5 и вытяжного 6 вентиляторов проходят через пластинчатый теплоутилизатор 2, где энергия отепленного вытяжного воздуха L у передается холодному приточному L п.н.

Рисунок 2. Конструктивная схема приточного и вытяжного агрегатов с пластинчатым утилизатором, имеющим обводной воздушный канал по приточному наружному воздуху: 1 - воздушный фильтр в приточном агрегате; 2 - пластинчатый утилизационный теплообменник; 3 - фланец присоединения воздушного тракта поступления вытяжного воздуха; 4 - фильтр карманный для очистки вытяжного воздуха L у; 5 - приточный вентилятор с электродвигателем на одной раме; 6 - вытяжной вентилятор с электродвигателем на одной раме; 7 - поддон сбора из каналов прохождения вытяжного воздуха сконденсированной влаги; 8 - трубопровод отвода конденсата; 9 - обводной воздушный канал для прохода приточного воздуха L п.н; 10 - автоматический привод воздушных клапанов в обводном канале; 11 - калорифер догрева приточного наружного воздуха, питаемый горячей водой

Как правило, вытяжной воздух имеет повышенное влагосодержание и температуру точки росы не ниже +4 °С. При поступлении в каналы теплоутилизатора 2 холодного наружного воздуха с температурой ниже +4 °С на разделительных стенках установится температура, при которой на части поверхности каналов со стороны движения удаляемого вытяжного воздуха будет происходить конденсация водяных паров.

Образовавшийся конденсат под воздействием потока воздуха L у, будет интенсивно стекать в поддон 7, откуда по присоединенному к патрубку 8 трубопроводу отводится в канализацию (или бак-накопитель).

Для пластинчатого утилизатора характерно следующее уравнение теплового баланса переданной теплоты к наружному приточному воздуху:

где Q ту - утилизируемая приточным воздухом теплоэнергия; L у, L п.н - расходы отепленного вытяжного и наружного приточного воздуха, м 3 /ч; ρ у, ρ п.н - удельные плотности отепленного вытяжного и наружного приточного воздуха, кг/м 3 ; I y 1 и I y 2 - начальная и конечная энтальпия отепленного вытяжного воздуха, кДж/кг; t н1 и t н2 , с р - начальные и конечные температуры, °С, и теплоемкость, кДж/(кг · °С), наружного приточного воздуха.

При низких начальных температурах наружного воздуха t н.х ≈ t н1 на разделительных стенках каналов выпадающий из вытяжного воздуха конденсат не успевает стекать в поддон 7, а замерзает на стенках, что приводит к сужению проходного сечения и увеличивает аэродинамическое сопротивление проходу вытяжного воздуха. Это увеличение аэродинамического сопротивления воспринимается датчиком, который передает команду на привод 10 на открытие воздушных клапанов в обводном канале (байпасе) 9.

Испытания пластинчатых утилизаторов в климате России показали, что при снижении температуры наружного воздуха до t н.х ≈ t н1 ≈ -15 °С, воздушные клапаны в байпасе 9 полностью открыты и весь приточный наружный воздух L п.н проходит, минуя пластинчатые каналы теплоутилизатора 2.

Нагрев приточного наружного воздуха L п.н от t н.х до t п.н осуществляется в калорифере 11, питаемом горячей водой из центрального источника теплоснабжения. В этом режиме Q ту, вычисляемое по уравнению (9.10), равно нулю, так как через присоединенный теплоутилизатор 2 проходит только вытяжной воздух и I y 1 ≈ I y 2 , т.е. утилизация теплоты отсутствует.

Вторым методом предотвращения замерзания конденсата в каналах теплообменника 2 является электрический предподогрев приточного наружного воздуха от t н.х до t н1 = -7 °С. В расчетных условиях холодного периода года в климате Москвы холодный приточный наружный воздух в электрокалорифере нужно нагревать на ∆t т.эл = t н1 - t н.х = -7 + 26 = 19 °С. Нагрев приточного наружного воздуха при θ t п.н = 0,7 и t у1 = 24 °С составит t п.н = 0,7 · (24 + 7) - 7 = 14,7 °С или ∆t т.у = 14,7 + 7 = 21,7 °С.

Расчет показывает, что в этом режиме нагрев в теплоутилизаторе и в калорифере практически одинаков. Использование байпаса или электрического предподогрева значительно снижает теплотехническую эффективность пластинчатых теплообменников в системах приточно-вытяжной вентиляции в климате России.

Для устранения этого недостатка отечественными специалистами разработан оригинальный метод быстрого периодического размораживания пластинчатых теплоутилизаторов путем подогрева удаляемого вытяжного воздуха, обеспечивающий надежную и энергоэффективную круглогодовую работу агрегатов.

На рис. 3 показана принципиальная схема установки утилизации теплоты вытяжного воздуха X на нагрев приточного наружного воздуха L п.н с быстрым устранением обмерзания каналов 2 для улучшения прохода удаляемого воздуха через пластинчатый теплоутилизатор 1.

Воздуховодами 3 теплоутилизатор 1 соединен с трактом прохождения приточного наружного воздуха L п.н, а воздуховодами 4 с трактом прохождения удаляемого вытяжного воздуха L у.

Рисунок 3. Принципиальная схема применения пластинчатого теплоутилизатора в климате России: 1 - пластинчатый теплоутилизатор; 2 - пластинчатые каналы для прохода холодного приточного наружного воздуха L п.н и теплого вытяжного удаляемого воздуха L у; 3 - присоединительные воздуховоды прохода приточного наружного воздуха L п.н; 4 - присоединительные воздуховоды прохода удаляемого вытяжного воздуха L у; 5 - калорифер в потоке удаляемого воздуха L у на входе в каналы 2 пластинчатого теплообменника 1,6- автоматический клапан на трубопроводе подачи горячей воды G w г; 7 - электрическая связь; 8 - датчик контроля сопротивления воздушного потока в каналах 2 для прохода вытяжного воздуха L у; 9 - отвод конденсата

При низких температурах приточного наружного воздуха (t н1 = t н. x ≤ 7 °С) через стенки пластинчатых каналов 2 теплота от вытяжного воздуха передается полностью теплоте, отвечающей уравнению теплового баланса [см. формулу (1)]. Снижение температуры вытяжного воздуха происходит с обильной конденсацией влаги на стенках пластинчатых каналов. Часть конденсата успевает стечь из каналов 2 и по трубопроводу 9 удаляется в канализацию (или бак-накопитель). Однако большая часть конденсата замерзает на стенках каналов 2. Это вызывает возрастание перепада давления ∆Р у в потоке удаляемого воздуха, замеряемого датчиком 8.

При возрастании ∆Р у до настроенной величины от датчика 8 через проводную связь 7 последует команда на открытие автоматического клапана 6 на трубопроводе подачи горячей воды G w г в трубки калорифера 5, установленного в воздуховоде 4 поступления удаляемого вытяжного воздуха в пластинчатый утилизатор 1. При открытом автоматическом клапане 6 в трубки калорифера 5 поступит горячая вода G w г, что вызовет повышение температуры удаляемого воздуха t y 1 до 45-60 °С.

При прохождении по каналам 2 удаляемого воздуха с высокой температурой произойдет быстрое оттаивание со стенок каналов наледей и образующийся конденсат по трубопроводу 9 стечет в канализацию (или в бак-накопитель конденсата).

После оттайки наледей перепад давлений в каналах 2 понизится и датчик 8 через связь 7 подаст команду на закрытие клапана 6 и подача горячей воды в калорифер 5 прекратится.

Рассмотрим процесс утилизации теплоты на I-d диаграмме, представленный на рис. 4.

Рисунок 4. Построение на I-d-диаграмме режима работы в климате Москвы установки утилизации с пластинчатым теплообменником и размораживанием его по новому методу (по схеме на рис. 3). У 1 -У 2 - расчетный режим извлечения теплоты из вытяжного удаляемого воздуха; Н 1 - Н 2 - нагрев утилизируемой теплотой приточного наружного воздуха в расчетном режиме; У 1 - У под 1 - нагрев вытяжного воздуха в режиме размораживания от наледей пластинчатых каналов прохождения удаляемого воздуха; У 1. раз - начальные параметры удаляемого воздуха после отдачи теплоты на оттаивание наледей на стенках пластинчатых каналов; H 1 -Н 2 - нагрев приточного наружного воздуха в режиме размораживания пластинчатого утилизационного теплообменника

Проведем оценку влияния метода размораживания пластинчатых теплоутилизаторов (по схеме на рис. 3) на теплотехническую эффективность режимов утилизации теплоты вытяжного воздуха на следующем примере.

ПРИМЕР 1. Исходные условия: В крупном московском (t н.х = -26 °С) производственно-административном здании в системе приточно-вытяжной вентиляции смонтирована теплоутилизационная установка (ТУУ) на базе рекуперативного пластинчатого теплообменника (с показателем θ t п.н = 0,7). Объем и параметры удаляемого вытяжного воздуха в процессе охлаждения составляют: L у = 9000 м 3 /ч, t у1 = 24 °С, I y 1 = 40 кДж/кг, t р.у1 = 7 °С, d у1 = 6,2 г/кг (см. построение на I-d-диаграмме на рис. 4). Расход приточного наружного воздуха L п.н = 10 000 м 3 /ч. Размораживание теплоутилизатора производится методом периодического повышения температуры удаляемого воздуха, как это показано на схеме рис. 3.

Требуется: Установить теплотехническую эффективность режимов утилизации теплоты с использованием нового метода периодической оттайки пластин аппарата.

Решение: 1. Вычисляем температуру нагретого утилизируемой теплотой приточного наружного воздуха в расчетных условиях холодного периода года при t н.х = t н1 = -26 °С:

2. Вычисляем количество утилизируемой теплоты за первый час работы установки утилизации, когда обмерзание пластинчатых каналов не повлияло на теплотехническую эффективность, но повысило аэродинамическое сопротивление в каналах прохождения удаляемого воздуха:

3. Через час работы ТУУ в расчетных зимних условиях на стенках каналов накопился слой инея, который вызвал повышение аэродинамического сопротивления ∆Р у. Определим возможное количество льда на стенках каналов прохода вытяжного воздуха через пластинчатый теплоутилизатор, образованного в течение часа. Из уравнения теплового баланса (1) вычислим энтальпию охлажденного и осушенного вытяжного воздуха:

Для рассматриваемого примера по формуле (2) получим:

На рис. 4 представлено построение на I-d-диаграмме режимов нагрева приточного наружного воздуха (процесс H 1 - H 2) утилизируемой теплотой вытяжного воздуха (процесс У 1 -У 2). Построением на I-d-диаграмме получены остальные параметры охлажденного и осушенного вытяжного воздуха (см. точку У 2): t у2 = -6,5 °С, d у2 = 2,2 г/кг.

4. Количество выпавшего из вытяжного воздуха конденсата вычисляется по формуле:

По формуле (4) вычисляем количество холода, затраченного на понижение температуры льда: Q = 45 · 4,2 · 6,5/3,6 = 341 Вт · ч. На образование льда затрачивается следующее количество холода:

Общее количество энергии, идущей на образование наледей на разделительной поверхности пластинчатых теплоутилизаторов, составит:

6. Из построения на I-d-диаграмме (рис. 4) видно, что при противоточном движении по пластинчатым каналам приточного L п.н и вытяжного L у воздушных потоков на входе в пластинчатый теплообменник наиболее холодного наружного воздуха по другую сторону разделительных стенок пластинчатых каналов проходит охлажденный до отрицательных температур вытяжной воздух. Именно в этой части пластинчатого теплообменника и наблюдаются интенсивные образования наледей и инея, которые будут перекрывать каналы для прохода вытяжного воздуха. Это вызовет повышение аэродинамического сопротивления.

Датчик контроля при этом подаст команду на открытие автоматического клапана поступления горячей воды в трубки теплообменника, смонтированного в вытяжном воздуховоде до пластинчатого теплообменника, что обеспечит нагрев вытяжного воздуха до температуры t у.под.1 = +50 °С.

Поступление горячего воздуха в пластинчатые каналы обеспечило за 10 мин оттайку замерзшего конденсата, который в жидком виде удаляется в канализацию (в бак-накопитель). За 10 мин нагрева вытяжного воздуха затрачено следующее количество теплоты:

или по формуле (5) получим:

7. Подведенная в калорифере 5 (рис. 3) теплота частично расходуется на растаивание наледей, что по расчетам в п. 5 потребует Q т.рас = 4,53 кВт · ч теплоты. На передачу теплоты к приточному наружному воздуху из затраченной теплоты в калорифере 5 на нагрев вытяжного воздуха останется теплоты:

8. Температура подогретого вытяжного воздуха после затраты части теплоты на размораживание вычисляется по формуле:

Для рассматриваемого примера по формуле (6) получим:

9. Подогретый в калорифере 5 (см. рис. 3) вытяжной воздух будет способствовать не только размораживанию наледей конденсата, но и увеличению передачи теплоты к приточному воздуху через разделительные стенки пластинчатых каналов. Вычислим температуру нагретого приточного наружного воздуха:

10. Количество теплоты, переданной на нагрев приточного наружного воздуха в течение 10 мин размораживания, вычисляется по формуле:

Для рассматриваемого режима по формуле (8) получим:

Расчет показывает, что в рассматриваемом режиме размораживания нет потерь теплоты, так как часть теплоты подогрева из удаляемого воздуха Q т.у =12,57 кВт · ч переходит на дополнительный догрев приточного наружного воздуха L п.н до температуры t н2.раз = 20,8 °С, вместо t н2 = +9 °С при использовании только теплоты вытяжного воздуха с температурой t у1 = +24 °С (см. п. 1).

Из всех видов потребляемой в химической промышленности энергии первое место принадлежит тепловой энергии. Степень использования тепла при проведении химико-технологического процесса определяется тепловым К.П.Д.:

где Q т и Q пр соответственно количество тепла, теоретически и практически затрачивае­мого на осуществление реакции.

Использование вторичных энергетических ресурсов (отходов) повышает К.П.Д. Энергетические отходы используются в химических и других отраслях промышленности для различных нужд.

Особенно большое значение в химической промышленности имеет утилизация тепла продуктов реакций, выходящих из реакторов, для предварительного нагрева материалов, поступающих в эти же реакторы. Такой нагрев осуществляется в аппаратах, называемых регенераторами, рекуператорами и котлами-утилизаторами. Они накапливают тепло отхо­дящих газов или продуктов и отдают его для проведения процессов.

Регенераторы представляют собой периодически действующие камеры, заполненные насадкой. Для непрерывного процесса необходимо иметь, по крайней мере, 2 регенера­тора.

Горячий газ сначала проходит через регенератор А, нагревает его насадку, а сам охлажда­ется. Холодный газ проходит через регенератор Б и нагревается от ранее нагретой на­садки. После нагрева насадки в А и охлаждения в Б заслонки перекрывают и т.д.

В рекуператорах реагенты поступают в теплообменник, где нагреваются за счёт те­пла горячих продуктов, выходящих из реакционного аппарата, и затем подаются в реак­тор. Теплообмен происходит через стенки трубок теплообменника.

В котлах-утилизаторах тепло отходящих газов и продуктов реакции используют для получения пара.

Горячие газы движутся по трубам, размещённым в корпусе котла. В межтрубном про­странстве находится вода. Образующийся пар, проходя влагоотделитель, выходит из котла.

Утилизация теплоты уже много лет широко применяется в тепло-энергетик е — подогреватели питательной воды, экономайзеры, воздухо-подогреватели, газотурбинные регенераторы и т. д., но в холодильной технике ей уделяется еще недостаточное внимание. Это можно объяс-нить тем, что обычно сбрасывается теплота низкого потенциала (при тем-пературе ниже 100°С), поэтому для ее использования необходимо вво-дить в холодильную систему дополнительные теплообменники и прибо-ры автоматики, что усложняет ее. При этом холодильная система стано-вится более чувствительной к изменению внешних параметров.

В связи с энергетической проблемой, в настоящее время проекти-ровщики, в том числе и холодильного оборудования , вынуждены более внимательно анализировать традиционные системы в поисках новых схем с регенерацией теплоты конденсации.

Если холодильная установка имеет воздушный конденсатор , можно использовать нагретый воздух непо-средственно после конденсатора для обогрева помещений. Можно полез-но использовать и теплоту перегретых паров хладагента после компрес-сора , имеющих более высокий температурный потенциал.

Впервые схемы утилизации теплоты были разработаны европей-скими фирмами, так как в Европе сложились более высокие цены на электроэнергию в сравнении с ценами в США.

Комплектное холодильное оборудование фирмы ’’Костан” (Ита-лия), разработанное в последние годы, с системой утилизации теплоты воздушных конденсаторов применяется для отопления торгового зала магазинов типа ’’Универсам”. Такие системы позволяют сократить общее энергопотребление в магазине на 20—30%.

Основная цель — использование максимально возможного количе-ства теплоты , выделяемой холодильной машиной в окружающую среду. Теплота передается либо непосредственно потоком теплого воздуха пос-ле конденсатора в торговый зал магазина во время отопительного сезо-на, либо в дополнительный теплообменник-аккумулятор (теплота пере-гретых паров хладагента) для получения теплой воды, которая исполь-зуется для технологических нужд в течение всего года.

Опыт эксплуатации систем по первому способупоказал, что они просты в обслуживании, но сравнительно громоздки, исполь-зование их связано с необходимостью установки дополнительных вен-тиляторов для перемещения большого количества воздуха и воздуш-ных фильтров, что в конечном итоге приводит к росту приведенных затрат. Учитывая это, предпочтение отдают более сложным схемам, несмотря на то, что их реализация усложняет эксплуатацию.

Наиболее простой схемой с теплообменником-аккумулятором — является схема с поcледовательным соединением конденсатора и акку-мулятора. Эта схема работает следующим образом. При тем-пературах воды на входе в теплообменник-аккумулятор и температура окру-жающего воздуха, равных 10°С, температура конденсации tK сос-тавляет 20 С. В течение короткого времени (например, в течение ночи) вода в аккумуляторе нагревается до 50°С, a t повышается до 30°С. Объясняется это тем, что общая производительность конденсатора и аккумулятора понижается, так как при нагреве воды уменьшается первоначальный температурный напор в аккумуляторе.

Повышение на 10°С вполне допустимо, однако при неблагоприятных сочетаниях высокой температуры и малого потребления воды может наблюдаться и более значительное повышение температуры кон-денсации . Эта схема имеет следующие недостатки при эксплуатации: колебания давления конденсации; периодическое значительное пони-жение давления в ресивере, которое приводит к нарушению питания испарителя жидкостью; возможное обратное перетекание жидкости в воздушный конденсатор во время остановки компрессора, когда t значительно ниже температуры в ресивере.

Установка регулятора давления конденсации позво-ляет предотвращать обратное перетекание конденсата из ресивера в воз-душный конденсатор, а также поддерживать необходимое давление конденсации, например, соответствующее 25 °С.

При повышении tw до 50°С и tок до 25 °С регулятор давленияполностью открывается, при этом падение давления в нем не превышает 0,001 МПа.

Если и t снижаются до 10°С, то регулятор давления закрыва-ется и внутренняя полость воздушного конденсатора, а также часть зме-евика теплообменника-аккумулятора заполняются жидкостью. При по-вышении t до 25°С регулятор давления вновь открывается и жидкость из воздушного конденсатора выходит переохлажденной. Давление над поверхностью жидкости в ресивере будет равно давлению конденсации минус падение давления в регуляторе, причем давление в ресивере мо-жет стать настолько низким (например, соответствовать tK < 15°С), что жидкость перед подачей к регулирующему вентилю не будет переох-лажденной. В этом случае необходимо ввести в схему регенеративный теплообменник.

Для поддержания давления в ресивере в схему также вводится диф-ференциальный клапан. При tк= 20°С и tок — 40°С диф-ференциальный клапан закрыт, падение давления в трубопроводах воздушного конденсатора, теплообменника-аккумулятора и регулятора давления незначительно.

При понижении до 0°С, a t до 10°С жидкость перед регулятором давления будет иметь температуру примерно 10°С. Падение давления в регуляторе давления станет значительным, откроется дифференци-альный клапан 6 и горячий пар будет поступать в ресивер.

Однако и это полностью не исключает проблемы отсутствия пере-охлаждения жидкости в ресивере. Необходимы обязательная установка регенеративного теплообменника либо использование ресивера специ-альной конструкции. В этом случае холодная жидкость из конденсатора направляется непосредственно в жидкостный трубопровод. Такого же эффекта можно достигнуть установкой вертикального реси-вера, в котором более холодная жидкость опускается на дно, а горячий пар поступает в верхнюю часть.

Расположение регулятора давления в схеме между теплообменни-ком-аккумулятором и воздушным конденсатором. предпочти-тельно по следующим причинам: зимой может потребоваться много вре-мени на достижение необходимого давления конденсации; в компрес-сорно-конденсаторном агрегате редко бывает достаточной длина трубо-провода между конденсатором и ресивером; в существующих установках необходимо отключать сливной трубопровод, чтобы встроить теп-лообменник-аккумулятор. По этой схеме устанавливается и обратный клапан.

Разработаны схемы с параллельным соединением воздушных конденсаторов для поддержания в одном помещении температуры 20°С, а в другом, где часто открываются зимой двери, — 10°С. Такие схемы также требуют установки регуляторов давления и дифференциальных клапанов.

Параллельно включенные конденсаторы с утилизацией теплоты в летнее время обычно не работают, и давление в них несколько ниже, чем в основном конденсаторе. Вследствие неплотного закрытия соленоид-ных и обратных клапанов возможны рециркуляция жидкости и заполне-ние конденсатора-утилизатора. Во избежание этого в схеме предусмат-ривают байпасный трубопровод, через который периоди-чески включается конденсатор с утилизацией теплоты по сигналу реле времени.

Колебания тепловой нагрузки основного конденсатора и конден-саторов с утилизацией теплоты связаны с необходимостью использова-ния в таких схемах ресивера большей вместимости, чем в холодильных машинах без утилизации теплоты, либо установки дополнительного ресивера параллельно первому, что заставляет увеличивать количество хладагента для заправки системы.

Анализ различных схем утилизации теплоты с использова-нием стандартных теплообменников коаксиального типа (труба в трубе) при полной конденсации в них и использовании лишь теплоты перегре-ва паров показывает, что установка работает экономичнее при полной конденсации в регенераторе теплоты лишь при непрерывном и стабиль-ном использовании теплой воды.

Холодильная машина работает по двум цик-лам (с температурой кипения — 10°С и разными температурами конден-сации 35 и 55°С). В качестве регенератора теплоты используется допол-нительный противоточный водяной теплообменник, передающий тепло-ту перегрева паров хладагента при температурном напоре холодопроизводительности компрессора 10 кВт и потребляемой мощ-ности 2,1 кВт (Тк = 35°С) в основном конденсаторе можно нагреть воду (при расходе ее 0,012 кг/с) с 10 до 30°С, а затем в регенераторе по-высить температуру воды с 30 до 65 °С. В цикле с 55°С при холодопроизводительности 10 кВт и по-требляемой мощности 3,5 кВт в основном конденсаторе воды (при расходе 0,05 кг/с) нагревается с 10 до 50°С, и затем в дополнительном теплообменнике-регенераторе вода (при расходе 0,017 кг/с) нагрева-ется с 50 до 91°С. В первом случае полезно используется 13,7%, во вто-ром - 52% всей подводимой энергии.

Во всех случаях при выборе системы утилизации теплоты холо-дильной машины необходимо определить следующее:

  • холодопроизводительность компрессора и тепловую нагрузку на конденсатор;
  • режим работы холодильной машины в летний и зимний периоды; возможность использования утилизированной теплоты; взаимосвязь между необходимой теплотой для обогрева помещения и нагрева воды;
  • требуемую температуру теплой воды и расход ее по времени; надежность работы холодильной машины в режиме получения холода.
  • Опыт эксплуатации систем утилизации теплоты показывает, что первоначальные капитальные затраты на такую систему в крупных магазинах окупаются в течение 5 лет, поэтому внедрение их экономически целесообразно.

СПОСОБЫ И ОБОРУДОВАНИЕ

ДЛЯ УТИЛИЗАЦИИ СБРОСНОЙ ТЕПЛОТЫ

Потенциальные возможности утилизации сбросной теплоты

Приблизительно половина всей тепловой и электрической энергии, расходуемой в промышленности, выбрасывается в виде отходящего тепла в воздушный и водный бассейны. Отходящее тепло выбрасывается из процесса при температуре превышающей температуру окружающей среды, поэтому оно обладает дополнительным тепловым потенциалом. По ценности отходящая энергия может классифицироваться по трем температурным диапазонам: высокотемпературный - выше 650 °С; среднетемпературный- 230-650 °С; низкотемпературный - менее 230 °С. Высокотемпературное и средне-температурное отходящее тепло используется для производства технологического пара, выработки электроэнергии, сушки, подогрева воздуха. Низкотемпературное тепло может быть использовано для отопления зданий, подогрева воды и воздуха.

Имеются четыре основные причины необходимости утилизации тепловой энергии:

1. Экономическая. Затраты на энергию становятся все более высокими, и утилизация отходящего тепла может значительно сократить общие издержки производства.

2. Обеспеченность тепловой энергией. Легко доступное отходящее тепло позволяет существенно снизить потребности предприятия в тепловой энергии.

3. Сбережение природных ресурсов страны. Путем утилизации тепла уменьшается потребность предприятий в дефицитных видах топлива, тем самым продляется срок их обеспеченности.

4. Экологическая. Утилизация сбросной теплоты снижает ее воздействие на экологию.

Методы утилизации отходящего тепла:

1. Непосредственная утилизация, например, для сушки или подогрева материалов при отсутствии каких-либо внутренних теплообменников.

2. Рекуперация, при которой отходящие газы и воздух, подвергаемый нагреву, разделяются металлической или огнеупорной теплообменными поверхностями. Передача энергии от одного потока к другому происходит непрерывно.

3. Регенерация, в ходе которой тепло отходящих газов передается теплообменному устройству, аккумулируется в нем в огнеупорных или металлических материалах и впоследствии служит для нагрева воздуха.

4. Утилизация с помощью котла-утилизатора, которая представляет собой одну из форм рекуперации с выработкой за счет тепла горячих отходящих газов технологического пара или горячей воды.

5. Совместное генерирование, при осуществлении которого совместно вырабатываются электрическая энергия и технологический пар.

6. Ступенчатое использование энергии, при котором вначале применяют энергию с наивысшими характеристиками, а затем все с более низкими параметрами для других связанных с этим процессов вплоть до того момента, когда эта энергия не будет иметь очень низкие параметры.

Потенциально возможные варианты применения отходящего тепла:

1) отходящие газы в диапазоне от средних до высоких температур могут использоваться для подогрева воздуха котлов с воздухонагревателями, печей с рекуператорами, сушилок с рекуператорами, газовых турбин с регенераторами;

2) отходящие газы в диапазоне от низких до средних температур могут использоваться для подогрева питающей котел воды при наличии экономайзеров;

3) отходящие газы и охлаждающая вода из конденсаторов могут использоваться для подогрева твердого и жидкого сырья в промышленных процессах;

4) отходящие газы могут использоваться для выработки пара в котлах-утилизаторах;

5) отходящее тепло может передаваться промежуточной среде при помощи теплообменников или котлов-утилизаторов, либо путем циркуляции горячих отходящих газов через трубы или каналы;

6) отходящее тепло может быть применено в абсорбционно-холодильном агрегате, для кондиционирования воздуха, и в тепловых насосах.

При выборе устройств для утилизации отходящего тепла должны учитываться:

а) температура отходящего тепла; б) интенсивность потока отходящего тепла; в) химический состав и наличие загрязняющих агентов в потоке отходящего тепла; г) необходимые температуры нагреваемых сред.