Способ горячего бескомпрессорного прессования металлических изделий. Основные способы прессования Оборудование для прессования

Прессование – процесс получения изделий путем выдавливания нагретого металла из замкнутой полости (контейнера) через отверстие инструмента (матрицы). Существуют два способа прессования: прямой и обратный. При прямом прессовании (рис. 17, а ) металл выдавливается в направлении движения пуансона. При обратном прессовании (рис. 17, б ) металл движется из контейнера навстречу движению пуансона.

Исходной заготовкой для прессования является слиток или горячекатаный пруток. Для получения качественной поверхности после прессования заготовки обтачивают и даже шлифуют.

Нагрев ведется в индукционных установках или в печах-ваннах в расплавах солей. Цветные металлы прессуются без нагрева.

Рис. 17. Прессование прямое(а) и обратное (б) :

1 – контейнер; 2 – пуансон; 3 – заготовка; 4 – игла; 5 – матрица; 6 – профиль

Деформация при прессовании

При прессовании реализуется схема всестороннего неравномерного сжатия, при этом нет растягивающих напряжений. Поэтому прессовать можно даже стали и сплавы с низкой пластичностью, например, инструментальные. Даже такие хрупкие материалы как мрамор и чугун поддаются прессованию. Таким образом, прессованием можно обрабатывать материалы, которые из-за низкой пластичности другими методами деформировать невозможно.

Коэффициент вытяжки µ при прессовании может достигать 30-50.

Инструмент для прессования

Инструмент – это контейнер, пуансон, матрица, игла (для получения полых профилей). Профиль получаемого изделия определяется формой отверстия матрицы; отверстия в профиле – иглой. Условия работы инструмента очень тяжелые: большие контактные давления, истирание, нагрев до 800-1200 С. Его изготавливают из высококачественных инструментальных сталей и жаропрочных сплавов.

Для уменьшения трения применяют твердые смазки: графит, порошки никеля и меди, дисульфид молибдена.

Оборудование для прессования

Это гидравлические прессы, с горизонтальным или вертикальным расположением пуансона.

Продукция прессования

Прессованием получают простые профили (круг, квадрат) из сплавов с низкой пластичностью и профили очень сложных форм, которые нельзя получить другими видами ОМД (рис. 18).

Рис. 18. Прессованные проф
или

Преимущества прессования

Точность прессованных профилей выше, чем прокатанных. Как уже говорилось, можно получать профили самых сложных форм. Процесс универсален с точки зрения перехода с размера на размер и с одного типа профиля на другой. Смена инструмента не требует больших затрат времени.

Возможность достижения очень высоких степеней деформации делает этот процесс высокопроизводительным. Скорости прессования достигают 5 м/c и более. Изделие получается за один ход инструмента.

Недостатки прессования

Большой отход металла в пресс-остаток (10-20 %), так как весь металл не может быть выдавлен из контейнера; неравномерность деформации в контейнере; высокая стоимость и большой износ инструмента; необходимость мощного оборудования.

Волочение

Волочение – изготовление профилей путем протягивания заготовки через постепенно сужающееся отверстие в инструменте – во локе.

Исходной заготовкой для волочения является пруток, толстая проволока или труба. Заготовка не нагревается, т. е. волочение – это холодная пластическая деформация.

Конец заготовки заостряется, его пропускают сквозь волоку, захватывают зажимным устройством и протягивают (рис. 19).

Деформация при волочении

При волочении на заготовку действуют растягивающие напряжения. Металл должен деформироваться только в сужающемся канале волоки; за пределами инструмента деформация недопустима. Обжатие за один проход небольшое: вытяжкаµ = 1,1÷1,5. Для получения нужного профиля проволока протягивается через несколько отверстий уменьшающегося диаметра.

Так как осуществляется холодная деформация, то металл наклепывается – упрочняется. Поэтому между протягиваниями через соседние волоки выполняется отжиг (нагрев выше температуры рекристаллизации) в трубчатых печах. Наклеп снимается, и металл заготовки снова становится пластичным, способным к дальнейшей деформации.

Инструмент для волочения

Инструмент – этоволока , или фильера , представляющая собой кольцо с профилированным отверстием. Изготавливают волоки из твердых сплавов, керамики, технических алмазов (для очень тонкой проволоки, диаметром менее 0,2 мм). Трение между инструментом и заготовкой уменьшают с помощью твердых смазок. Для получения полых профилей применяют оправки.

Рабочее отверстие волоки имеет по длине четыре характерные зоны (рис. 20): I – входная, или смазочная, II – деформирующая, или рабочая, с углом α = 8÷24º, III – калибрующая, IV – выходной конус.

Допуск на размер проволоки в среднем составляет 0,02 мм.

Оборудование для волочения

Существуют волочильные станы различных конструкций – барабанные, реечные, цепные, с гидравлическим приводом и др.

Барабанные станы (рис. 21) применяют для волочения проволоки, прутков и труб малого диаметра, которые можно сматывать в бунты.

Барабанные станы многократного волочения могут включать до 20 барабанов; между ними располагаются волоки и печи для отжига. Скорость движения проволоки находится в пределах 6-3000 м/мин.

Цепные волочильные станы (рис. 22) предназначены для изделий большого сечения (прутков и труб). Длина получаемого изделия ограничена длиной станины (до 15 м). Волочение труб выполняют на оправке.

Р
ис. 22. Цепной волочильный стан:

1 – волока; 2 – клещи; 3 – каретка; 4 – тяговый крюк; 5 – цепь; 6 – ведущая звездочка;

7 – редуктор; 8 – электродвигатель

Продукция, получаемая волочением

Волочением получают проволоку диаметром от 0,002 до 5 мм, а также прутки, фасонные профили (различные направляющие, шпонки, шлицевые валики) и трубы (рис. 23).

Рис. 23. Профили, получаемые волочением

Преимущества волочения

Это высокая точность размеров (допуски не более сотых долей мм), малая шероховатость поверхности, возможность получать тонкостенные профили, высокая производительность, малое количество отходов. Процесс универсален (просто и быстро можно заменить инструмент), поэтому широко распространен.

Важно также, что можно изменять свойства получаемых изделий за счет наклепа и термообработки.

Недостатки волочения

Неизбежность наклепа и необходимость отжигов усложняет процесс. Обжатие за один проход невелико.

Ковка

Ковкой называют получение изделий путем последовательного деформирования нагретой заготовки ударами универсального инструмента – бойков . Получаемую заготовку или готовое изделие называют поковкой .

Исходной заготовкой служат слитки или блюмы, сортовой прокат простого сечения. Нагревают заготовки обычно в печах камерного типа.

Деформация при ковке

Деформация в процессе ковки идет по схеме свободного пластического течения между поверхностями инструмента. Деформирование может выполняться последовательно на отдельных участках заготовки, поэтому её размеры могут значительно превышать площадь бойков.

Величину деформации выражает уковка :

где F max и F min – начальная и конечная площадь поперечного сечения заготовки, причем берется отношение большей площади к меньшей, поэтому уковка всегда больше 1. Чем больше значение уковки, тем лучше прокован металл. Некоторые из операций ковки показаны на рис. 25.

Рис. 25. Операции ковки:

а – протяжка;б – прошивка (получение отверстия);в – рубка (разделение на части)

Инструмент для ковки

Инструмент является универсальным (применимым для самых разных по форме поковок): бойки плоские или вырезные и набор подкладного инструмента (оправок, прожимок, прошивней и т. д.).

Оборудование для ковки

Применяются машины динамического, или ударного, действия – молоты и машины статического действия – гидравлические прессы .

Молоты подразделяются на пневматические , с массой падающих частей до 1 т, и паровоздушные , с массой падающих частей до 8 т. Молоты передают заготовке энергию удара за доли секунды. Рабочим телом в молотах является сжатый воздух или пар.

Гидравлические прессы с усилием до 100 МН предназначены для обработки самых тяжелых заготовок. Они зажимают заготовку между бойками в течение десятков секунд. Рабочим телом в них является жидкость (водная эмульсия, минеральное масло).

Применение ковки

Ковка чаще всего применяется в единичном и мелкосерийном производстве, особенно для получения тяжелых поковок. Из слитков весом до 300 т можно получить изделия только ковкой. Это валы гидрогенераторов, турбинные диски, коленчатые валы судовых двигателей, валки прокатных станов.

Преимущества ковки

Это, прежде всего, универсальность процесса, позволяющая получить самые разнообразные изделия. Для ковки не требуется сложного инструмента. В ходе ковки улучшается структура металла: волокна в поковке расположены благоприятно для того, чтобы выдерживать нагрузку при эксплуатации, литая структура измельчается.

Недостатки ковки

Это, конечно, низкая производительность процесса и необходимость значительных припусков на механическую обработку. Поковки получаются с низкой точностью размеров и большой шероховатостью поверхности.

Прессование металлов – это технология, в которой заготовка, обычно круглого сечения, продавливается штоком пресса – пресс-штемпелем – под высоким давлением через специальный инструмент – матрицу – в один или несколько профильных прессованных изделий – прутки, проволоку, трубы или профили. Эту технологию называют также экструзией. Ее применяют главным образом для производства прутков, проволоки, труб и профилей из алюминиевых и медных сплавов. Однако прессование (экструзию) применяют также и для производства в небольших количествах труб из нержавеющей стали, стальных профилей и полуфабрикатов из других металлов .

Прямое и обратное прессование

На рисунке ниже показаны два наиболее важных метода прессования:

  • прямое прессование;
  • обратное прессование.

Рисунок – Методы прессования:
а) прямое прессование; б) обратное прессование

При прямом прессовании пресс-штемпель, обычно с установленной на его переднем конце пресс-шайбой, выдавливает заготовку из неподвижного контейнера через формообразующий инструмент – матрицу. В этом методе относительное движение происходит между заготовкой и контейнером.

При обратном прессовании, наоборот, матрица располагают спереди полого пресс-штемпеля и ее продавливают через заготовку в ходе поступательного движения заглушенного сзади контейнера. В этом случае, отсутствует относительное движение между заготовкой и контейнером.

Давление и температура

В ходе прессования внутри заготовки создается напряженное состояние всестороннего сжатия, что дает возможность развития больших деформаций при малом риске образования трещин. Отношение между площадями поперечных сечений заготовки и прессуемого профиля называют коэффициентом вытяжки или отношением прессования. Обычно эта величина составляет от 10 до 100. В отдельных случаях, например, при прессовании латунной проволоки, отношение прессования может достигать 1000. Однако это требует низкого предела текучести прессуемого материала и, кроме того, высокого удельного давления прессования – до 1000 Н/мм 2 .

По этим причинам прессование металлов обычно производится при высокой температуре:

  • – обычно в интервале от 400 до 500 ºС;
  • медных сплавов – в интервале от 600 до 900 ºС;
  • нержавеющие стали и специальные сплавы – до 1250 ºС.

Необходимо отметить, что кроме прямого и обратного прессования существуют также другие, специальные, методы прессования, которые применяются в значительно меньших объемах:

  • гидростатическое прессование;
  • метод «Conform»;
  • метод изготовления кабельных оболочек.

Прутково-профильное прессование

Прессование на прутково-профильных прессах применяют при производстве проволоки, полос, прутков, сплошных и полых профилей. Прутково-профильному прессованию соответствует английский термин «rod extrusion» . В этом случае полые профили, в том числе, трубы, прессуют через матрицы с так называемыми сварочными камерами. В этих камерах материал сваривается в процессе деформации внутри матрицы. Это называется «сваркой давлением». Поэтому полые профили, в том числе, трубы, которые производят этим методом прессования, имеют сварные швы.

Трубопрофильное прессование

На трубопрофильных прессах производят трубы и полые профили, которые не имеют сварных швов. Такие трубы так и называются «бесшовные трубы». Для этого применяют специальные оправки (“иглы”), которые проходят заготовку насквозь – “прошивают” ее. При этом оправка формирует внутренний контур трубы, а матрица – наружный. Трубопрофильному прессованию соответствует английский термин «tube extrusion» .

Источники:

1. – ASM International, 2006

2.Прессование цветных металлов и сплавов / Грабарник Л.М., Нагайцев А.А. – М.: Металлургия, 1991

Прессование – один из распространенных методов ОМД. Осуществляют в горячем и в холодном состояниях, не только пластичных, но и хрупких материалов, не только компактных, но и порошкообразных (см. рис.1.5). Методом прессования получают изделия самой разнообразной формы, определяемой формой очка матрицы (рис.15.1). Сортамент изделий включает профили с описанным диаметром от 3 до 250 мм, трубчатые профили диаметром от 20 до 600 мм, полые профили с одним или несколькими каналами сложной формы и пр., которые другими способами получить затруднительно или вообще невозможно.

Достоинствами способа является большие вытяжки за прессовку (до 1000), возможность прессования малопластичных материалов, универсальность способа – можно получать разнообразные изделия простой заменой матрицы, высокое качество поверхности и точность прессуемых изделий.

К недостаткам следует отнести повышенный расход металла из-за пресс-остатка, сравнительно высокую стоимость прессового оборудования, низкую производительность.

Известны два метода прессования - прямой и обратной (рис.15.2). При прямом направление движения пуансона и изделия совпадают, при обратном – противонаправлены. Но главным отличием является наличие или отсутствие перемещения металла относительно стенок контейнера. При прямом прессовании металл скользит по поверхности контейнера (за исключением небольших участков в углах, образованных контейнером и матрицедержателем - т.н. «мертвые зоны»), преодолевая противодействие сил контактного трения. При обратном - такое скольжение металла отсутствует, поэтому сила обратного прессования в 1,5…2,0 раза меньше, чем при прямом. Но этот метод более сложен по использованию, длина изделия ограничена длиной штанги пуансона, ниже производительность. Поэтому он не получил широкого распространения.

Процесс прессования осуществляют в гидравлических и механических прессах. Более распространены гидравлические прессы. Они отличаются простотой конструкции, обеспечивают значительные силы прессования, легкую регулировку скорости хода пуансона.

Гидравлические прессы бывают вертикального и горизонтального типов усилием до 60 МН и более. Прессы укомплектовывают соответствующим вспомогательным оборудованием для подачи и выдачи слитков из печи, транспортировки слитка от печи к прессу и установки его в контейнер, отрезки пресс-остатка и его уборки и пр. Все эти операции от посадки слитка в печь до уборки готовых изделий полностью механизированы и автоматизированы.

Прессование полых изделий, в т.ч. труб, осуществляют из пустотелых гильз или сплошных заготовок на оправке (игле). При использовании сплошных заготовок ее вначале прошивают иглой в контейнере, а затем начинают процесс прессования – металл выдавливают в щель между матрицей и иглой.


Эффективность прессования во многом зависит от прессового инструмента. В процессе прессования он подвергается циклическому воздействию высоких температур (до 1250 о С) с частыми теплосменами, высоким давлениям, абразивному трению. Особенно это относится к матрицам. По количеству отверстий матрицы бывают одно- и многоочковые (до 30). Существенной частью матрицы является рабочий поясок, определяющий размер и форму прессуемых изделий (рис. 15.3). Длина рабочего пояска 4…5 мм для мелких профилей и 10…15 мм – для крупных.

Из-за быстрого износа и потери размеров применяют матрицы со вставками из твердосплавных материалов.

Благоприятная схема деформации – трехосного сжатия, – обеспечивает возможность прессования даже малопластичных и хрупких металлов, в т.ч. титана, вольфрама, молибдена, бериллия, циркония и пр. Определяющими являются термомеханические условия прессования – температура, свойства металлов, вытяжка, условия трения. Обычно для получения требуемых свойств необходима не менее, чем 10-кратная вытяжка литого металла.

С точки зрения повышения выхода годного желательно иметь слитки возможно большей длины, но при этом резко возрастают сила прессования, размеры оборудования и пр. Практикой установлены такие соотношения между длиной L слитка и его диаметром D : L = 2,0…3,0D для сплошных изделий и L = 1,5…2,0D для полых.

При прессовании различают скорость прессования (скорость движения пуансона) и скорость истечения металла из матрицы. Они связаны между собой зависимостью .

Обычно пластичные металлы прессуют с повышеной скоростью истечения (алюминия до 25 м/сек, стали – до 8 м/сек), а малопластичные со скоростью всего 5 см/сек.

Прессование осуществляют со смазкой. Обычно составной частью смазки является графит, а в качестве связки машинное масло и канифоль. При прессовании труднодеформируемых сплавов используют жидкое стекло.

Прессованные изделия обычно подвергают отделочным операциям – термообработке, травлению поверхности, правке, зачистке дефектов, нанесению защитных и/или декоративных покрытий и пр.

Основными способами формования изделий из металлических порошков являются:

  • прессование в пресс-формах;
  • изостатическое прессование;
  • прокатка порошков;
  • мундштучное прессование;
  • шликерное формование;
  • динамическое прессование.

Прессование в пресс-формах

Прессование в пресс-формах наиболее распространено в связи с тем, что оно обеспечивает получение деталей, которые практически не подвергаются механической обработке.

Прессование в пресс-формах может быть односторонним и двухсторонним. Одностороннее прессование применяется при изготовлении изделий простой конфигурации, у которых отношение длины или высоты к диаметру или толщине не превышает 3.

Размеры прессуемого изделия в направлении, перпендикулярном направле6нию прессования, определяются размерами полости пресс-формы и являются для данной пресс-формы стабильными. Размер в направлении прессования (по высоте) может меняться при каждом очередном прессовании.

Получение изделия заданной высоты можно обеспечить либо прессованием с использованием ограничителей высоты (так называемое прессование до упора), когда ход плунжера пресса ограничивается специальными ограничителями, либо путем контроля давления прессования по индикатору или манометру. Прессование до упора обеспечивает высокую производительность и получение изделий с размерами, которые зависят от колебаний характеристик порошка вследствие влияния последних на упругое последействие. Метод прессования по давлению основывается на наличии точного соответствия между приложенным давлением и плотностью спрессованного брикета для каждого сорта порошка.

Операция прессования из-за специфических особенностей накладывает ограничения на форму и размеры прессуемых изделий. Например, невозможно получить изделия с боковыми впадинами, которые приходится изготавливать дополнительной механической обработкой. Отверстия, перпендикулярные направлению прессования, необходимо высверливать после операций прессования и спекания.

Наиболее распространенными видами брака спрессованных брикетов являются расслойные трещины (расслой) и осыпание граней. Причинами расслоя являются неправильный режим прессования (высокое давление прессования при использовании непластичных порошков с большим упругим последействием), неправильная конструкция пресс-формы и плохо обработанные стенки её, неравномерная засыпка шихты в полость матрицы и другие факторы.

При горячем прессовании используются графитовые пресс-формы или пресс-формы из жаропрочных сталей. В этом случае процесс прессования обычно совмещается со спеканием, так как применяемые температуры горячего прессования составляют 0,5 – 0,8 от Т пл. основного компонента смеси.

Изостатическое прессование

Изостатическим называют прессование в эластичной оболочке под действием всестороннего сжатия. Если сжимающее усилие создается жидкостью, прессование называют гидростатическим, а если газом – газостатическим.

При гидростатическом прессовании порошок засыпается в резиновую оболочку, помещают её в рабочую камеру гидростата, в которой создают требуемое давление жидкостью с помощью насоса высокого давления.

В качестве жидкости может использоваться масло, вода, глицерин. При этом виде прессования почти отсутствует трение частиц порошка о стенки оболочки, так как те из них, которые прилегают к оболочке, перемещаются вместе с ней. Равенство и равномерность сжимающих усилий во всех направлениях приводит к тому, что боковое давление равно единице. Плотность различных участков получаемой прессовки практически одинаково.

Порошок, находящийся в оболочке, до приложения к нему давления подвергают вибрации для обеспечения равномерной плотности засыпки и дегазации, так как воздух, имеющийся в порах засыпки, будет препятствовать уплотнению.

Гидростатическим прессованием получают цилиндры, трубы, шары и другие изделия. К недостаткам гидростатического прессования следует отнести трудности получения брикетов размерами близкими к заданным и необходимость применения механической обработки при изготовлении изделий точных форм и размеров, а также низкую производительность процесса.

Газостатическое прессование пока не получило широкого распространения из-за сложности конструкций прессующих устройств. Оно может проводится при комнатной температуре или при повышенных температурах. Прессование при высоких температурах совмещается с процессом спекания и позволяет получать изделия практически любых материалов с относительной плотностью, близкой к теоретической.

Прокатка порошков

Прокатка металлических порошков представляет собой формование в прокатном стане. Сущность метода прокатки заключается в подаче порошка в зазор между двумя вращающимися навстречу один другому валками.

Силами внешнего трения порошок увлекается в зазор и уплотняется в изделие достаточной прочности, обеспечивающей транспортировку его на спекание. Поступление порошка в валки может быть свободным, когда он поступает в очаг деформации под действием собственной массы, и под давлением, когда порошок в валки подаётся принудительно, с помощью специальных устройств. Например, подача порошка в валки с помощью шнекового устройства, когда давление подпора порошка в очаге деформации создается за счет разности производительности шнека и пропускной способности валков.

Толщина и плотность заготовки зависят от химического и гранулометрического состава порошка, формы его частиц, давления порошка на валки, состояния поверхности валков и других факторов. При прокатке каждая частица в зависимости от усилия прессования и формы частиц будет иметь разную степень деформации и различную плотность. Частицы шаровой формы будут меньше деформироваться, чем частицы дендритной или игольчатой формы и заготовка из этих частиц будет иметь меньшую плотность. Кроме того, заготовка из частиц с сильно развитой поверхностью обладает повышенной плотностью.

Процесс прокатки порошка от начала поступления его в валки и до выхода из валков делится на три периода. В первый период, который называется начальным неустановившемся , заготовка имеет переменные толщину и плотность, так как плотность порошка, заполняющего зону деформации, изменяется по высоте. При вращении валков в зазор между ними увлекаются деформируемые частицы порошка, которые вызывают расклинивающее действие, а в очаг деформации поступают новые порции порошка. Когда процесс вовлечения и прессования порошка уравновешивается сопротивлением стана упругим деформациям, наступает второй период, называемый установившимся периодом прокатки, в котором выходящая из валков заготовки имеет постоянную плотность. В третьем периоде, называемым нестационарным , происходят обратные явления в связи с разгрузкой валков стана.

В начальном и конечном периодах параллельно с изменением плотности изменяется давление порошка на валки и в результате упругой деформации стана изменяется толщина заготовки. В связи с этим при прокатке порошков стремятся к максимальному сокращению длительности этих периодов, а концевые участки заготовок подлежат обрезке, так как они обычно неоднородны по плотности.

Порошок можно прокатывать в холодном или горячем состоянии. Прокатка при комнатной температуре наиболее проста, но менее эффективна, чем прокатка подогретого порошка.

Заготовки после прокатки обычно спекают в печах непрерывного действия в защитной атмосфере.
В некоторых случаях после спекания применяют ещё одну или несколько повторных уплотняющих прокаток и спеканий, обеспечивающих получение заготовки с заданными свойствами. При одновременной прокатке нескольких порошков, различающихся по свойствам металлов, или порошка и листового металла получают многослойный прокат.

Прокатка металлических порошков применяется для получения заготовок конструкционных, электротехнических, фрикционных и антифрикционных изделий (лента, листы, проволока и др.), а также в производстве фильтров и других пористых изделий для очистки разных сред.

Мундштучное прессование

Мундштучным прессованием называют формование заготовок путем продавливания смеси порошка с пластификатором через отверстие в матрице.

При мундштучном прессовании можно продавливать через мундштук либо смесь порошка со связкой, либо предварительно спрессованную заготовку, которую перед продавливанием подогревают.

В качестве пластификатора применяют парафин, поливиниловый спирт, крахмал, бакелит. Мундштучное прессование эффективно при производстве прутков, труб, уголков и других больших по длине изделий из плохо прессуемых материалов, в том числе тугоплавких металлов и соединений, твердых сплавов и других.

Шликерное формование

Шликерное формование является способом изготовления изделий путём заливки шликера, представляющего собой однородную концентрированную взвесь порошка в жидкости, в пористую форму с последующей сушкой. При этом процесс формования совершается без приложения внешнего давления. Иногда этот процесс формования называют шликерным литьём.

Для приготовления шликера используют очень мелкие порошки, взвесь которых в жидкости (растворы на основе воды и спирта) однородна и устойчива в течение длительного времени. Шликер содержит некоторое количество добавок (кислоты, щелочи, различные соли), препятствующих скапливанию частиц и улучшающих смачивание частиц порошка и стенок формы жидкостью.

Форму для шликерного формования изготавливают из гипса, пористой керамики, нержавеющей стали и других подобных материалов.

Заготовку получают путем заливки шликера во влагопоглощающую форму, жидкость из которой удаляется через поры. Механизм формования заключается в направленном осаждении твердых частиц на стенках формы под действием направленных потоков жидкости. Потоки возникают в результате впитывания жидкости в поры формы под влиянием разрежения или под воздействием центробежных сил при центробежном шликерном формовании.

Скорость наращивания твердого слоя зависит от скорости удаления жидкости, размера частиц, соотношения между твердой и жидкой фазами в шликере, температуры, количества добавок. Связь между частицами обусловлена в основном механическом зацеплением.

Полученная заготовка извлекается из формы и подвергается сушке и спеканию. Для облегчения удаления заготовки внутреннюю поверхность формы покрывают тонким слоем специального вещества (мыло, графит, бумага, тальк), препятствующего схватыванию с формируемым материалом.

Изделия, полученные шликерным формованием, вследствие большой исходной пористости, которая может достигать 60%, при спекании дают значительную усадку. Однако плотность изделий после спекания получается достаточно большой и равномерной по объёму.

Методом шликерного формования изготавливают изделия сложных форм (трубы, тигли, турбинные лопатки и др.), которые трудно получить традиционными методами прессования, особенно в случае уплотнения хрупких порошкообразных материалов.

Динамическое формование

Динамическое формование представляет собой процесс прессования с использованием импульсных нагрузок или вибрации. Отличительной чертой такого формования является высокая скорость приложения нагрузки к уплотняемому порошку. В связи с этим его часто называют высокоскоростным.

В качестве источника энергии используют энергию взрыва заряда взрывчатого вещества, ударную волну высокой интенсивности, возникающую при разряде аккумулированной электрической энергии и воздействующую на материал через жидкость, энергию сжатого газа, вибрацию.

При взрывном формовании энергия взрыва сообщает определенную скорость устройству, ударяющему по прессующему пуансону, либо передается на прессуемый порошок через жидкость, либо воздействует на прессуемый порошок, заключенный в эластичную оболочку или тонкостенный металлический контейнер. Такой высокоскоростной вид прессования приводит к выделению тепла и нагреву контактных межчастичных участков, что облегчает процесс деформирования. В результате плотность заготовок достигает большего значения, чем при обычных методах прессования низкоскоростными нагрузками.

Разновидностью динамического формования является динамическое горячее прессование (метод ДГП). Метод основан на предварительном холодном формовании пористой заготовки из порошковой шихты заданного состава, её последующем кратковременном нагреве и допрессовки динамическими нагрузками. Этот метод позволяет получать практически беспористые изделия точных размеров и с высокой чистотой поверхности.

При вибрационном формовании используется эффект благоприятного воздействия вибрации на процесс уплотнения, что связано с разрушением межчастичных связей и улучшением взаимоподвижности частиц. В результате достигается плотная укладка частиц при меньших давлениях прессования и обеспечивается высокая равномерность распределения плотности по объёму заготовки.

Энергия вибрирования расходуется на преодоление инерции и упругого сопротивления вибрирующей системы и на преодоление инерции, сил трения и сцепления уплотняемого порошка. В случае уплотнения порошка небольшой массы основную роль играют инерция и упругие свойства системы. Поэтому для обеспечения наиболее выгодного режима уплотнения следует выбирать частоту вибрирования ближе к собственной частоте колебаний системы. При уплотнении больших масс порошка основную роль будут играть собственная частота колебаний слоя частиц и силы связи между ними. Поэтому частоту вибрирования выбирают ближе к резонансной или по отношению к вибрирующей системе, или по отношению к уплотняемой массе порошка. При правильном выборе частоты, ускорения и амплитуды вибрирования плотность и прочность прессовок выше, чем при статическом прессовании.

Во всех случаях, требующих высоких давлений при статическом прессовании применение вибрирования будет выгодным. Наиболее эффективно применение вибрации при прессовании порошков непластичных и хрупких металлов, к которым высокие статические давления не могут быть приложены из-за происходящего при этом разрушения брикетов.

Процесс прессования представляет собой выдавливание металла, помещенного в замкнутую полость контейнера, через отверстие матрицы. Этот способ находит широкое применение при деформировании как в горячем, так и в холодном состоянии металлов, имеющих не только высокую податливость, но и обладающих большой жесткостью.

Прессованием изготавливаются разнообразные виды изделий: цельные сечением 3250мм ; различные полые профили с постоянным и переменным сечением 20÷400мм и толщиной стенки 1÷3мм ; трубы20400мм при толщине стенки 1,512мм ,. Некоторые виды изделий представлены на Рисунок 28. Профили, получаемые прессованием, часто оказываются более экономичными, чем изготовляемые прокаткой, а в некоторых случаях их невозможно произвести другим способом.

    Виды отпрессованных изделий.

Основным преимуществом прессования металла относятся:

    возможность пластической обработки с большими вытяжками;

    обработка малопластичных металлов;

    возможность получения практически любого поперечного сечения изделия;

    универсальность оборудования для получения различных изделий;

    высокое качество поверхности, точность.

К недостаткам можно отнести:

    повышенный расход металла на единицу изделия;

    повышенный расход энергии;

    периодичность процесса;

    высокая стоимость инструмента.

Различают 2 основных способа прессования: прямой (Рисунок 29 а ) и обратный (Рисунок 29б ).

При прямом методе нагретый слиток цилиндрической формы, помещенный в контейнер, подвергается трехстороннему сжатию. Давление металлу передается пресс – штемпелем, матрица – неподвижна.

При обратном методе прессования пресс – штемпель делается полым и на его конце укрепляется матрица. При движении пресс – штемпеля справа налево, матрица, являющаяся одновременно и пресс – шайбой, давит на торцевую часть слитка, при этом металл вынужден вытекать в обратном направлении, т.к. контейнер в противоположном направлении закрыт массивной упорной шайбой. Если при прямом методе вся масса слитка перемещается внутри контейнера в направлении движения (течения) металла, то при обратном прессовании слиток неподвижен относительно стенок контейнера, вследствие чего значительно уменьшается действие сил трения при прессовании. В результате усилия прессование обратным методом снижается на 2530%, но конструкция пресса при этом усложняется. К преимуществам обратного метода относится также и снижение потерь металла, 1518% металла уходит в отходы при прямом методе, в так называемую выдру (пресс-остаток), и 56% при обратном.

    Схемы прессования:а – прямой метод,б – обратный метод.

Прессование труб производится обычно прямым методом, хотя возможно прессование коротких труб большого диаметра (300400мм.) обратным методом.

Рассмотрим прессование трубы прямым методом (Рисунок 30). Слиток помещается в контейнер, включается главный гидроцилиндр и начинается движение пресс–шайбы, при этом происходит распрессовка слитка, то есть заполнение контейнера металлом. Следующей операцией, перед прессованием, является прошивка металла в контейнере стальной иглой.

Игла связана со штоком специального прошивного цилиндра, расположенного по оси пресса среди главного гидроцилиндра. Передний конец иглы проходит через распрессованый металл, выдвигаясь на некоторое расстояние в отверстие матрицы, и останавливается. Затем включается главный цилиндр пресса, начинает движение пресс–шайба и металл начинает течь через кольцевой зазор, образованный стенками отверстия матрицы и наружной поверхностью иглы.

    Схема прессования полой заготовки.

Во время прессования возникает очаг деформации, который зависит от способа прессования, коэффициент трения, податливости металла. Различают три основных вида очага деформации, Рисунок 31.

Первый вид (Рисунок 31а ) характерен тем, что деформация сосредоточена вблизи матрицы.

Такой вид наблюдается при обратном прессовании, а также при прямом, если коэффициент трения низок (тщательная обработка стенок контейнера и качественная смазка). Прессование идет без «заворота» металла, механические свойства прутка по сечению и длине отличаются стабильностью.

Второй вид (Рисунок 31б ) очага деформации имеет место при средних значениях коэффициента трения и незначительных изменениях механических свойств сечения слитка в контейнере (при захоложенных периферийных слоях).

Очаг деформации распространяется на всю длину заготовки. Течение внутренних слоев происходит с некоторым опережением внешних. Появляются как бы два объема деформируемого тела: внешний и внутренний –. Однако прессование и в этом случае идет без «заворота».

    Виды очага деформации.

Третий вид (Рисунок 31в ) очага деформации имеет место при высоком коэффициенте трения между стенкой контейнера и слитком, а также значительной жесткости внешних слоев заготовки по сравнению с внутренними. Очаг деформации характеризуется высокой неравномерностью течения металла и состоит из трех объемов. Объем, расположенный непосредственно перед матрицей, отличается наибольшей интенсивностью течения металла. Объемпо мере развития деформации течет от периферии к оси заготовки, создает пережим в первом объеме - возникает вихревое движение металла. Объемпримыкает к пресс–шайбе, он увеличивается к концу прессования. Процесс прессования прекращают до момента входа этого объема в матрицу, т.к. начнется процесс «заворота» и снижение качества изделия ввиду вовлечения в готовое изделие окалины, окисление частиц металла с поверхности слитка, другой структуры металла.

В местах перехода контейнера в матрицу появляются мертвые углы, в которых металл испытывает упругую деформацию. Наряду с отрицательной ролью мертвых зон (увеличивают пресс–остаток), они играют некоторую и положительную. В мертвых зонах скапливаются различные загрязнения металла. При определенных условиях эти примеси могут попасть в готовое изделие.