Микросхемы серии tda. Микросхема усилитель TDA7294: описание, datasheet и примеры использования. Пример использования TDA7294

  • 06.01.2016

    На ИМС LM2896 можно сделать простой двухканальный усилитель мощности звуковой частоты. Напряжение питания усилителя может находится в пределах от 3 до 15В. При напряжении питания 12В выходная мощность усилителя составит 2,5 Вт на канал при 8-и омной нагрузке. КНИ на частоте 1 кГц и выходной мощности 1Вт не превышает 0,14%. …

  • 05.10.2014

    Главной задачей схемы представленной на рисунке это подключить громкоговорители к усилителю мощность с некоторой задержкой, чтобы избежать возможных щелчков вызванных переходными процессами протекающими в усилителе после подачи питания. Схема очень проста, она управляет обмоткой реле (300 Ом 24В) подавая на нее питание с небольшой задержкой (5сек.) Схема не нуждается в …

  • 24.11.2014

    Предложенный преобразователь напряжения преобразует постоянное напряжение 12В в 28В, которое может использоваться для питания других уст-в, напряжение питания которых выше основного (например аккумулятора). Основой преобразователя является микросхема LM2585, которая повышает напряжение за счет накопленной энергии в катушке индуктивности L1. Частота работы преобразователя 100кГц. Для защиты уст-ва от КЗ рекомендуется на выходе …

  • 05.10.2014

    Регулирующие транзисторы выбираются, исходя из тока нагрузки. Для тока 25 А можно использовать один транзистор КТ878, или два КТ848А, включенных параллельно, или три 10-амперных транзистора (КГ819, КТ808, КТ841), снабдив их, конечно, уравнивающими ток резисторами сопротивлением 0,1 Ом. Их наматывают константановой проволокой диаметром 0,3 мм или более на корпусе резистора МЛТ-2. …

Одним из первых мною был собран усилитель на TDA7294 по схеме предложенной производителем.

Вместе с тем, качество воспроизведения звука особенно в области высоких частот меня не очень устраивало. В сети интернет мое внимание привлекла статья LINCOR, размещенная на сайте datagor.ru. Восторженные отзывы автора о звучании УМЗЧ на TDA7294, собранного по схеме источника тока, управляемого напряжением (ИТУН), меня заинтриговали. В результате мной был собран УМЗЧ по следующей схеме.

Схема работает следующим образом. Сигнал со входа IN поступает через проходной конденсатор C1 на низкоомное плечо обратной связи R1 R3, которое вместе с конденсатором C2 образует ФНЧ, препятствующий проникновению наводок и ВЧ шумов в звуковой тракт. Вместе с резистором R4, входная цепь создает первый сегмент ООС, Ку которого равен 2.34. Далее, если бы не токовый датчик R7, коэффициент усиления второй цепи задавался бы отношением R5/R6 и равнялся бы 45.5. Итоговый Ку был бы около 100. Однако, токовый датчик в схеме все-таки есть, и его сигнал суммируясь с падением напряжения на R6, создает частичную ООС по току. При наших номиналах схемы Ку =15.5.

Характеристики усилителя при работе на нагрузку 4 Ома:

– Рабочий диапазон частот (Гц) – 20-20000;

– Напряжение питания (В) – ±30;

– Номинальное входное напряжение (В) – 0.6;

– Номинальная выходная мощность (Вт) – 73;

– Входное сопротивление (кОм) – 9.4;

– THD при 60Вт, не более (%) – 0.01.

На печатной плате разведен параметрический стабилизатор на 12В, для питания сервисных цепей 9 и 10 TDA7294, представлен на рисунке.

В положении «Play!», усилитель находится в разблокированном состоянии и готов к работе ежесекундно. В положении «Mute» блокируются входные и выходные каскады микросхемы, а ее потребление снижается до минимальных дежурных токов. Емкости C11 C12 увеличены вдвое по сравнению со штатными для обеспечения большей задержки при включении и предотвращении щелчка в АС даже при длительном заряде конденсаторов блока питания.

Детали усилителя

Все резисторы, кроме R7 и R8, угольные или металлопленочные на 0.125–0.25Вт, типа С1-4, С2-23 или МЛТ–0.25. Резистор R7 – проволочный резистор на 5Вт. Рекомендуются белые SQP–резисторы в керамическом корпусе. R8 – резистор цепи Цобеля, угольный, проволочный или металлопленочный на 2Вт.

C1 – пленочный, максимально доступного качества, лавсановый или полипропиленовый. Удовлетворительный результат даст и К73–17 на 63В. C2 – керамический дисковый или любого другого типа, например К10–17Б. С3 – электролит максимально доступного качества на напряжение не менее 35 В, C4 C7, C8, C9 - пленочные типа К73–17 на 63 В. C5 C6 – электролитические на напряжение не менее 50 В. C11 C12 – любые электролитические на напряжение не менее 25 В. D1 – любой стабилитрон на 12…15 В мощностью не менее 0.5 Вт. Вместо микросхемы TDA7294 можно использовать TDA7296…7293. В случае использования TDA7296, TDA7295, TDA7293, необходимо откусить или отогнуть и не впаивать 5 ножку микросхемы.

Обе выходные клеммы усилителя «горячие», ни одна из них не заземлена, т.к. акустическая система также является звеном обратной связи. АС включается между и .

Ниже представлена компоновка платы с видами со стороны элементов и проводников, созданная с помощью программы Sprint-Layout_6.0.

В этой статье я расскажу Вам о такой микросхеме, как TDA1514A

Вступление

Начну немного с печального... В данный момент производство микросхемы прекращено... Но это не значит, что она сейчас "на вес золота", нет. Практически в любом радиомагазине или на радиорынке ее можно достать по цене 100 - 500 рублей. Согласитесь, немного дороговато, но цена абсолютно справедливая! Кстати, на мировых интернет-площадках, таких как и они стоят намного дешевле...

Микросхема отличается низким уровнем искажений и широким диапазоном воспроизводимых частот, поэтому лучше использовать на широкополосных динамиках. Люди, собиравшие усилители на данной микросхеме хвалят ее за высокое качество звучания. Это одна из немногих микросхем, действительно "качественно звучащая". По качеству звука ни чуть не уступает популярным ныне TDA7293/94. Однако, если в сборке допущены ошибки - качественная работа не гарантируется.

Краткое описание и достоинства

Данная микросхема представляет собой одноканальный Hi-Fi - усилитель класса AB, мощность которого составляет 50Вт. В микросхему встроена защита SOAR, термозащита (защита от перегрева) и режим "Mute"

К достоинствам можно отнести отсутствие щелчков при включении и выключении, наличие защит, малые гармонические и интермодуляционные искажения, низкое тепловое сопротивление и другое. Из недостатков выделить практически нечего, кроме как выход из строя при "бегающем" напряжении (питание должно быть более-менее стабильным) и относительно высокая цена

Коротко о внешнем виде

Микросхема выпускается в корпусе SIP с 9 длинными ножками. Шаг ножек составляет 2.54мм. На лицевой стороне надписи и логотип, а на задней теплоотвод - он соединен с с 4 ножкой, а 4 ножка это "-" питания. По бокам 2 проушины для крепления радиатора.

Оригинал или подделка?

Этим вопросом задаются многие, я постараюсь Вам ответить.

Итак. Микросхема должна быть аккуратно выполнена, ножки должны быть гладкими, незначительная деформация допускается, так как неизвестно как обращались с ними на складе или в магазине

Надпись... Она может быть выполнена как белой краской, так и обычным лазером, две микросхемы выше для сравнения (обе оригинальные). В том случае, если надпись нанесена краской, на микросхеме должна ВСЕГДА быть вертикальная полоса, разделенная проушиной. Пусть Вас не смущает надпись "TAIWAN" - ничего страшного, качество звучания у таких экземпляров ни чуть не хуже экземпляров без этой надписи. Кстати, практически половина радиодеталей делается в Тайване и в странах по соседству. Эта надпись находится не на всех микросхемах.

Еще советую обратить внимание на вторую строчку. Если она содержит только цифры (их должно быть 5) - это микросхемы "старого" производства. Надпись на них более широкая, также теплоотвод может иметь другую форму. Если надпись на микросхеме нанесена лазером и вторая строчка содержит только 5 цифр - на микросхеме должна присутствовать вертикальная полоса

Логотип на микросхеме должен присутствовать обязательно и причем только "PHILIPS"! Насколько мне известно, выпуск прекратился задолго до основания NXP, а это 2006 год. Если вы встретили данную микросхему с логотипом NXP, тут одно из двух - микросхему снова начали выпускать или же типичный "левачок"

Также необходимо присутствие впадин в форме кругов, как на фото. Если их нет - подделка.

Возможно есть еще способы выявить "левачок", но не стоит так напрягаться над этим вопросом. Случаев брака - всего единицы.

Технические характеристики микросхемы

* Входное сопротивление и коэффициент усиления подстраивается внешними элементами

Ниже таблица примерных выходных мощностей в зависимости от питания и сопротивления нагрузки

Напряжение питания Сопротивление нагрузки
4 ом 8 ом
10Вт 6Вт
+-16.5В

28Вт

12Вт
48Вт 28Вт
58Вт 32Вт
69Вт 40Вт

Принципиальная схема

Схема взята из даташита (май 1992)

Слишком она громоздкая... Пришлось перерисовать:

Схема немного отличается от предоставленной производителем, все характеристики, приведенные выше - они именно под ЭТУ схему. Отличий несколько и все они направлены на улучшение звука - в первую очередь установлены фильтрующие емкости, убрана "вольтдобавка" (о ней чуть позже) и изменен номинал резистора R6.

Теперь более подробно о каждом компоненте. C1 - входной разделительный конденсатор. Пропускает через себя только переменное напряжение сигнала. Также влияет на частотную характеристику - чем меньше емкость, тем меньше НЧ и соответственно чем больше емкость - тем и НЧ больше. Больше 4.7мкФ ставить не советовал бы, так как производитель предусмотрел всё - при емкости этого конденсатора равной 1мкФ усилитель воспроизводит заявленные частоты. Конденсатор использовать пленочный, в крайнем случае электролитический (неполярный желательно), но никак не керамический! R1 уменьшает входное сопротивление, а вместе с C2 образует фильтр от входных помех.

Как и в любом операционном усилителе здесь можно задать коэффициент усиления. Это делается при помощи R2 и R7. При этих номиналах КУ равен 30дБ (может незначительно отклоняться). С4 влияет на включение защиты SOAR и Mute, R5 влияет на плавную зарядку и разрядку конденсатора, в связи с чем при включении и выключении усилителя отсутствуют щелчки. С5 и R6 образуют так называемую цепь Цобеля. Ее задача - препятствование самовозбуждению усилителя, а также выполнение стабилизации частотной характеристики. C6-C10 подавляют пульсации по питанию, защищают от просадки напряжения.
Резисторы в данной схеме можно брать с любой мощностью, я например использую стандартные 0.25Вт. Конденсаторы на напряжение не менее 35В, кроме С10 - я использую у себя в схеме на 100В, хотя и 63В должно хватить. Все компоненты перед пайкой должны быть проверены на исправность!

Схема усилителя с "вольтдобавкой"

Данный вариант схемы взят из даташита. Отличается от вышеописанной схемы присутствием элементов С3, R3 и R4.
Такой вариант позволит получить до 4Вт больше, чем заявлено (при ±23В). Но при таком включении могут незначительно повысится искажения. Резисторы R3 и R4 применять на 0.25Вт. У меня на 0.125Вт не выдерживали. Конденсатор C3 - 35В и выше.

В данной схеме необходимо использование двух микросхем. Одна дает на выходе положительный сигнал, другая - отрицательный. При таком включении можно снять более 100Вт на 8 Ом.

По словам собравших, данная схема абсолютно работоспособна и у меня даже есть более подробная табличка примерных выходных мощностей. Она ниже:

А если поэксперементировать, например при ±23В подключить нагрузку 4 ом, то можно получить до 200Вт! При условии что радиаторы не будут сильно греться, 150Вт в мост микросхемы потянут легко.

Такую конструкцию неплохо использовать в сабвуферах.

Работа в внешними выходными транзисторами

Микросхема является по сути дела мощным операционным усилителем и его можно умощнить еще, повесив на выход пару из комплиментарных транзисторов. Данный вариант пока не проверялся, но теоретически он возможен. Также можно умощнить и мостовую схему усилителя, повесив на выход каждой микросхеме по паре комплиментарных транзисторов

Работа при однополярном питании

В самом начале даташита я нашел строки, в которых написано, что микросхема работает и при однополярном питании. А где же схема тогда? Увы, в даташите нету, в интернете не нашел... Не знаю, может где-то и существует такая схема, но я такую не видел... Единственное что могу посоветовать - TDA1512 или TDA1520. Звучание отличное, но питаются от однополярного питания, да и выходной конденсатор может слегка подпортить картину. Найти их довольно проблематично, выпускались очень давно и были давно сняты с производства. Надписи на них могут быть различной формы, проверять на "фальшивку" их не стоит - случаев отказа не было.

Обе микросхемы представляют собой Hi-Fi - усилители класса АВ. Мощность около 20Вт при +33В на нагрузку 4 ом. Схемы приводить не буду (тема же все-таки про TDA1514A). Скачать печатные платы для них можно в конце статьи.

Питание

Для стабильной работы микросхемы нужен источник питания с напряжением от ±8 до ±30В с током не менее 1.5А. Питание должно подаваться толстыми проводами, входные провода максимально дальше удалить от выходных проводов и источника питания
Питать можно обычным простым блоком питания, в который входят сетевой трансформатор, диодный мост, фильтрующие емкости и по желанию дроссели. Для получения ±24В необходим трансформатор с двумя вторичными обмотками по 18В с током более 1.5А для одной микросхемы.

Можно использовать импульсные блоки питания, например самый простенький, на IR2153. Вот его схема:

Этот ИБП выполнен по полумостовой схеме, частота 47кГц (устанавливается при помощи R4 и C4). Диоды VD3-VD6 ультрабыстрые или Шоттки

Возможно применение данного усилителя в машине, с использованием повышающего преобразователя. На той же IR2153, вот схема:

Преобразователь выполнен по схеме Push-Pull. Частота 47кГц. Диоды выпрямительные нужны ультрабыстрые или Шоттки. Расчет трансформатора также можно выполнить в ExcellentIT. Дроссели в обоих схемах "посоветует" сама ExcellentIT, Считать их нужно в программе Drossel. Автор программы тот же -

Хочу сказать пару слов о IR2153 - блоки питания и преобразователи получаются довольно неплохие, но в микросхеме не предусмотрена стабилизация выходного напряжения и поэтому оно будет меняться в зависимости от напряжения питания, да и просаживаться будет.

Не обязательно использовать IR2153 и вообще импульсные блоки питания. Можно обойтись проще - как в "старину", обычный трансформатор с диодным мостом и огромными емкостями по питанию. Вот так выглядит его схема:

C1 и С4 не менее 4700мкФ, на напряжение не менее 35В. С2 и С3 - керамика или пленка.

Печатные платы

Сейчас у меня имеется такая коллекция плат:
а) основная - ее можно увидеть на фото снизу.
б) слегка измененная первая (основная). Увеличены в ширине все дорожки, силовые намного шире, элементы слегка передвинуты.
в) мостовая схема. Плата отрисована не совсем удачно, но работоспособна
г) первый вариант ПП - первый пробный вариант, не хватает цепи Цобеля, а так собирал, работает. Есть даже фото (снизу)
д) печатная плата от XandR_man - нашел на форуме сайта "Паяльник". Что сказать... Строго схема из даташита. Более того, я своими глазами видел наборы на основе этой печатки!
Кроме того, Вы можете самостоятельно нарисовать плату, если не устраивают предоставленные.

Пайка

После того, как Вы изготовили плату и проверили все детали на исправность, можно приступать к пайке.
Залудите всю плату, а силовые дорожки лудить как можно более толстым слоем припоя
Первыми впаиваются все перемычки (их толщина должна быть как можно больше в силовых участках), а далее все компоненты по увеличению размера. последней впаивается микросхема. Советую не резать ножки, а впаивать такой, какая она есть. Можно потом согнуть ее для удобства посадки на радиатор.

Микросхема защищена от статического электричества, так что можно паять включенным паяльником, сидя даже в шерстяной одежде.

Однако, необходимо паять так, чтобы микросхема не перегревалась. Для надежности можно во время пайки прицепить за одну проушину к радиатору. Можно за две, разницы тут не будет, лишь бы кристалл внутри не перегрелся.

Настройка и первый запуск

После того, как все элементы и провода впаяны, необходим "тестовый запуск". Прикрутите микросхему на радиатор, замкните входной провод с землей. В качестве нагрузки Вы можете подключать будущие колонки, а вообще, чтобы они не "вылетели" за доли секунд при браке или ошибках в монтаже используют мощный резистор в качестве нагрузки. Если же он вылетает, знайте - Вы допустили ошибку, либо вам попался брак (микросхема имеется ввиду). К счастью, такие случаи почти не происходят, в отличие от TDA7293 и прочих, которых в магазине можно набрать кучу из одной партии и как потом выяснится - все они брак.

Однако, хочу сделать небольшое замечание. Делайте Ваши провода как можно короче. Было такое, что я всего лишь удлинил выходные провода и стал слышать в динамиках гул, похожий на "постоянку". Более того, при включении усилителя из-за "постоянки" динамик выдавал гул, который пропадал через 1-2 секунды. Сейчас у меня из платы выходят провода, максимум 25 см и идут сразу к динамику - усилитель включается бесшумно и работает без проблем! На входные провода тоже обратите внимание - ставьте экранированный провод, длинным его тоже не не стоит делать. Соблюдайте простые требования и у Вас все получится!

Если ничего не произошло с резистором, отключите питание, прикрепите входные провода к источнику сигнала, подключите Ваши колонки и подавайте питание. В динамиках можно услышать небольшой фон - это говорит о том, усилитель работает! Подайте сигнал и наслаждайтесь звучанием (в том случае если все отлично собрано). Если "хрюкает", "пердит" - посмотрите на питание, на правильность сборки, ибо как выявлено в практике - уж таких "гадких" экземпляров нету, которые при правильной сборке и отличном питании криво работали...

Как выглядит готовый усилитель

Вот серия фотографий, сделанных в декабре 2012. Платы как раз после пайки. Тогда я собирал, чтобы убедиться в работоспособности микросхем.




А вот мой первый усилитель, до сегодняшних дней дожила только плата, все детали ушли на другие схемы, а сама микросхема вышла из строя из-за попадания на него переменного напряжения


Ниже свежие фотографии:



К сожалению, мой ИБП на стадии изготовления, а запитывал я микросхему раньше от двух одинаковых аккумуляторов и небольшого трансформатора с диодным мостом и небольшими емкостями по питанию, в итоге было ±25В. Две таких микросхемы с четырьмя колонками от музыкального центра "Sharp" так играли, что даже предметы на столах "танцевали под музыку", окна звенели, да и телом чувствовалась мощность неплохо. Снять этого сейчас не могу, но есть источник питания ±16В, от него до 20Вт на 4 ома можно получить... Вот видео Вам в качестве доказательства, что усилитель абсолютно рабочий!

Благодарности

Огромную благодарность выражаю пользователям форума сайта "Паяльник", а конкретно огромное спасибо пользователю за некоторую помощь, благодарю также , и многих другим (извините что Вас не назвал по никам) за честные отзывы, которые подтолкнули меня на сборку данного усилителя. Без всех Вас данная статья могла быть и не написана.

Завершение

Микросхема обладает рядом достоинств, прекрасным звучанием в первую очередь. Многие микросхемы такого класса могут даже уступать по качеству звучания, но это в зависимости от качественной сборки. Плохая сборка - плохое звучание. Подходите к сборке электронных схем серьезно. Крайне не рекомендую паять данный усилитель навесным монтажем - это может только ухудшить звучание, либо привести к самовозбуждению, а в последствии полного выхода из строя.

Я собрал практически всю информацию, которую проверял сам и мог спросить у других людей,которые собирали данный усилитель. Жаль, что у меня не имеется осциллографа - без него мои высказывания о качестве звука ничего не значат... Но я буду и дальше утверждать, что звучит она просто прекрасно! Собиравшие данный усилитель меня поймут!

Если остались вопросы, пишите мне на форум сайта "Паяльник". по обсуждению усилителей на данной микросхеме, можете спрашивать там.

Надеюсь статья оказалась полезной для Вас. Удачи Вам! С уважением, Юрий.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Микросхема TDA1514A 1 В блокнот
С1 Конденсатор 1 мкФ 1 В блокнот
С2 Конденсатор 220 пФ 1 В блокнот
С4 3.3мкФ 1 В блокнот
С5 Конденсатор 22 нФ 1 В блокнот
С6, С8 Электролитический конденсатор 1000мкФ 2 В блокнот
С7, С9 Конденсатор 470 нФ 2 В блокнот
С10 Электролитический конденсатор 100мкФ 1 100В В блокнот
R1 Резистор

20 кОм

1 В блокнот
R2 Резистор

680 Ом

1 В блокнот
R5 Резистор

470 кОм

1 В блокнот
R6 Резистор

10 Ом

1 Подбирается при настройке В блокнот
R7 Резистор

22 кОм

1 В блокнот
Схема с вольтдобавкой
Микросхема TDA1514A 1 В блокнот
С1 Конденсатор 1 мкФ 1 В блокнот
С2 Конденсатор 220 пФ 1 В блокнот
С3 Электролитический конденсатор 220мкФ 1 От 35В и выше В блокнот
С4 Электролитический конденсатор 3.3мкФ 1 В блокнот
С5 Конденсатор 22 нФ 1 В блокнот
С6, С8 Электролитический конденсатор 1000мкФ 2 В блокнот
С7, С9 Конденсатор 470 нФ 2 В блокнот
С10 Электролитический конденсатор 100мкФ 1 100В В блокнот
R1 Резистор

20 кОм

1 В блокнот
R2 Резистор

680 Ом

1 В блокнот
R3 Резистор

47 Ом

1 Подбирается при настройке В блокнот
R4 Резистор

82 Ом

1 Подбирается при настройке В блокнот
R5 Резистор

470 кОм

1 В блокнот
R6 Резистор

10 Ом

1 Подбирается при настройке В блокнот
R7 Резистор

22 кОм

1 В блокнот
Мостовое включение
Микросхема TDA1514A 2 В блокнот
С1 Конденсатор 1 мкФ 1 В блокнот
С2 Конденсатор 220 пФ 1 В блокнот
С4 Электролитический конденсатор 3.3мкФ 1 В блокнот
С5, С14, С16 Конденсатор 22 нФ 3 В блокнот
С6, С8 Электролитический конденсатор 1000мкФ 2 В блокнот
С7, С9 Конденсатор 470 нФ 2 В блокнот
С13, С15 Электролитический конденсатор 3.3мкФ 2 В блокнот
R1, R7 Резистор

20 кОм

2 В блокнот
R2, R8 Резистор

680 Ом

2 В блокнот
R5, R9 Резистор

470 кОм

2 В блокнот
R6, R10 Резистор

10 Ом

2 Подбирается при настрйоке В блокнот
R11 Резистор

1.3 кОм

1 В блокнот
R12, R13 Резистор

22 кОм

2 В блокнот
Импульсный блок питания
IC1 Драйвер питания и MOSFET

IR2153

1 В блокнот
VT1, VT2 MOSFET-транзистор

IRF740

2 В блокнот
VD1, VD2 Выпрямительный диод

SF18

2 В блокнот
VD3-VD6 Диод Любые Шоттки 4 Ультрабыстрые диоды или Шоттки В блокнот
VDS1 Диодный мост 1 Диодный мост на необходимый ток В блокнот
С1, С2 Электролитический конденсатор 680мкФ 2 200В В блокнот
С3 Конденсатор 10 нФ 1 400В В блокнот
С4 Конденсатор 1000 пФ 1 В блокнот
С5 Электролитический конденсатор 100мкФ 1 В блокнот
С6 Конденсатор 470 нФ 1 В блокнот
С7 Конденсатор 1 нФ 1

Не требует наладки. Он только требует немного времени на сборку и монтирование в корпус при желании.

Технические характеристики усилителя на TDA2005 следующие:

  • Напряжение питания (В) - 6-18
  • Пиковое значение выходного тока (А) - 3
  • Ток в режиме покоя (мА) - 75
  • Диапазон воспроизводимых частот (Гц) - 40-20000
  • Коэффициент нелинейных искажений (%) - 1
  • Сопротивление нагрузки номинальное (Ом) - 3,2
  • Сопротивление нагрузки минимальное (Ом) - 2
  • Выходная мощность (Вт при напряжении питания 18 В) - 22
  • Входная чувствительность (мВ) - 300
  • Коэффициент усиления (Дб) - 50

В статье я предложу вам три варианта платы для моно усилителя и один вариант для стерео усилителя.

Данный усилитель превосходно себя зарекомендовал как простой, надёжный и непривередливый. Его чаще всего встраивают в самодельные домашние гитарные кабинеты (т.е. подходит для гитаристов), а так же в автомобильные магнитолы малой мощности (особенно в 90-х годах). Пусть фраза "малой мощности" вас не пугает - коэффициента усиления этой микросхемы хватит, чтобы напугать соседей. Просто 20 Вт для авто сейчас - это действительно ничто, по сравнению с киловаттными усилителями и динамиками, от которых при включении на полную мощность запросто могут лопнуть барабанные перепонки.

Начнём с платы, у которой самая удачная, на мой взгляд, разводка "земли".

Вот схема, плата, расстановка деталей на плате и параметры деталей усилителя на TDA2005 :

Плата простого моно усилителя на TDA2005

Схема расстановки деталей на простом моно усилителе на TDA2005

Список деталей:

Именно вариант с этой платой я встраивал в свою переделку советской колонки S30 в гитарный комбоусилитель.

Плату зеркалить не нужно.

После сборки получилось вот так:

Только на фото очень маленький радиатор. Для усилителя на TDA2005 нужен побольше. Поэтому он был заменён на радиатор большего размера.

Теперь перейдём к остальным вариантам разводки печатной платы.

Второй вариант платы моно усилителя на TDA2005 .

Как припаивать регулятор громкости и сигнальные провода:

Третий вариант платы моно усилителя на TDA2005 .

Выбирайте любой вариант:) Мне больше понравился самый первый.

Теперь к стерео усилителю на TDA2005 .

Плата его чуть больше:

И схема немного другая:

Напомню, что стерео усилитель на TDA2005 развивает мощность вдвое меньшую, чем моно усилитель. Однако, всегда можно собрать две платы моно усилителя и получить стерео. Только питание нужно с тем же вольтажом, но силой тока около 5-6 А.

Осталось показать ещё один вариант схемы моно усилителя, рекомендуемый производителем.

Микросхемы TDA8362, TDA8395, TDA4661 (или TDA4665) производятся фирмой PHILIPS и являются основой большинства аналоговых телевизоров, производимых в Европе (или для Европы). Микросхема TDA8362 - универсальный малосигнальный аналоговый телевизионный процессор, это значит, что микросхема содержит полный тракт обработки сигнала начиная с выхода высокочастотного преобразователя (тюнера) и до каскадов выходного усиления видеосигналов основных цветов, усилителя мощности ЗЧ и выходных каскадов строчной кадровой развертки.

Микросхема содержит тракт УПЧИ и второй ПЧЗ, тракт яркости и цветности по стандартам PAL и NTSC, схему синхронизации и задающих генераторов разверток, схему регулировки громкости, вставки сигналов телетекста, компьютера или отображения символов регулировки на экране телевизора.

Микросхема имеет раздельные выводы для питания строчной развертки и остальных цепей, что позволяет очень просто блокировать строчную развертку для режима дежурного выключения (STAND-BY). Для создания полного тракта микросхему нужно дополнить емкостной линией задержки на другой микросхеме - TDA4661 или TDA4665.

Чтобы получить возможность режима SECAM нужно добавить еще TDA8395 - микросхему содержащую полный тракт цветности по системе SECAM с минимумом внешних навесных элементов (микросхема фактически включается параллельно собственному тракту цветности TDA8362, а переключение происходит отключением выходов внутренней системой опознавания стандарта).

TDA8362 имеет такие особенности.
Усилитель ПЧ имеет симметричный вход, что позволяет использовать фильтр на ПАВ. Синхронный демодулятор и система формирования напряжения ошибки для АПЧГ (автоподстройка частоты тюнера) имеют один LC контур на выводах 2 и 3.

Система АРУ доя своей работы использует информацию о амплитуде синхроимпульсов или пиков уровня белого, что снижает зависимость работы АРУ от уровня помех или шумов. Время реакции системы АРУ задается конденсатором, подключенным к выводу 48, а рабочая точка изменения напряжения устанавливается изменением постоянного напряжения на выводе 49. Напряжение АРУ снимается с вывода 47.

С выхода предварительного усилителя (вывод 7) видеосигнал через ФНЧ, удаляющий составляющую второй ПЧЗ, поступает на коммутатор видеовходов (вывод 13), который может использоваться для сопряжения с видеомагнитофоном.

Составляющая второй ПЧЗ с выхода предварительного видеоусилителя (вывод 7) через полосой фильтр поступает на вход тракта У ПЧЗ, особенность которого в том, что и поступление входного сигнала ПЧ и регулировка громкости (или блокировка) выполняется по одному и тому же выводу - 5. Частотный детектор ПЧЗ не имеет внешних резонансных или фазосдвигающих цепей. Предварительный УЗЧ тоже имеет вход для приема внешнего аудиосигнала (от видеомагнитофона) - вывод 6, а переключение (телевидео) происходит по выводу I.

На схему синхронизации сигнал поступает по внутренним цепям Система строчной синхронизации имеет две пегли автоматического регулирования для генерации универсального стробимпульса. Строчный генератор не нуждается в предварительной установке частоты строк, для её стабилизации используется сигнал от кварцевого генератора тракта цветности. Кадровый генератор имеет делитель частоты для автоматической настройки частоты кадров и в регулировке тоже не нуждается.

С выхода коммутатора видеосигнал поступает на режекторный и полосовой фильтры, имеющиеся внутри микросхемы, которые разделяют сигналы цветности и яркости. В усилителе яркости происходит фиксация уровня черного, а затем усиленный сигнал через емкостную линию задержки сигнала яркости (в составе микросхемы) поступает на матрицу основных цветов.

Регулировка яркости и контрастности происходит в выходных усилителях основных цветов. Между яркостной матрицей и этими усилителями включены коммутаторы, которые позволяют сделать вставку телетекста и отображения символов (выводы 22, 23, 24 и вывод 21 - управление коммутаторами).

Сигнал цветности поступает на универсальный PAL / NTSC декодер с автоматическим выбором системы.

С выхода демодулятора цветоразностные сигналы (выводы 30 и 31) поступают на корректирующую емкостную линию задержки на TDA4661 (TDA4665), и с её выходов на схему восстановления постоянной составляющей, в которой происходит регулировка цветовой насыщенности путем изменения уровней цветоразностных сигналов.

Электрические параметры микросхемы TDA8362.

Напряжение питания.......................................6,7... 10В (номинал 8...9В).
Ток потребления при отсутствии входных сигналов не более..... 80 мА.
Чувствительность УПЧИ не хуже........................................ 70 мкв.
Дифференциальное входное сопротивление УПЧИ............1200 ом.
Входная емкость УПЧИ.......................................не более 5 пф.
Максимальный диапазон регулировки усиления УПЧ системой АРУ......64 дб.
Амплитуда выходного видеосигнала (номинал)...........................2,4 В.
Уровень вершин синхроимпульсов на выходе видеоусилителя............2,7 В.
Выходное сопротивление видеоусилителя..........................................48 ом.
Отношение сигнал/шум видеоусилителя не хуже.................................... 55 дб.
Минимальное значение сигнала ПЧ на входе УПЧИ при котором начинает работать система АРУ...... 200 мкв.
Максимальный размах выходного напряжения АРУ, на тюнер........ 2 В.
Уровень внешнего видеосигнала, поступающего на коммутатор............. 0,95В
Уровни внешних RGB сигналов вставки (телетекста)............................0,7В
Чувствительность УПЧ звука не хуже......................................... 1 мв.
Входное сопротивление УПЧЗ..........................................................2,6 ком
Входная емкость УПЧЗ..................................................................... 6 пф.
Среднеквадратическое значение выходного ЗЧ сигнала.......................0,65В
Диапазон регулировки громкости..................................................... 80 дб.
Чувствительность внешнего входа аудиосигнала...............................0,35 В
Уровень среза строчной синхронизации............................................ 50%
Полоса захвата частот строчной синхронизации............................ +/- 900гц
Максимальный выходной ток генератора строчной развертки......... 10мА
Диапазон кадровой синхронизации..............................................45...64 гц
Выходной ток кадрового генератора............................................. 1 мА
Выходное напряжение обратной связи кадр, генератора 2,5В (переменная сост. 1 В)
Время задержки емкостной линии задержки яркостного сигнала...... 260 нc
Полоса пропускания яркостной линии задержки............................. 6 мгц
Выбросы по переднему и заднему фронтам яркостной Л3................. 140 c
Диапазон автоматической регулировки усилителя цветности.................... 26 дб
Диапазон захвата системы ФАПЧ кварц, генератора............................ +-400 гц
Амплитуды цветоразностных сигналов на выходах демодулятора..... 425 мв
Уровень, при котором происходит гашение RGB сигналов (для вставки) ..... 4 В
Амплитуды выходных сигналов основных цветов (на плату кинескопа).........4В
Все напряжения регулировок должны изменяться в пределах...... 0...5В.

Микросхема TDA4661 (TDA4665).

Интегральная линия задержки с корректором, задерживающая сигналы на время действия одной строки - 64 мкс. Предназначена для работы с микросхемами, вырабатывающими положительные цветоразностные сигналы.

Микросхема имеет два гребенчатых фильтра, для реализации задержки используется метод переключения конденсаторов. Микросхема имеет минимальное количество навесных элементов и не требует настройки. Имеется схема фиксации уровня, что упрощает подключение микросхемы (через конденсаторы). Линия задержки имеет матрицу суммирования прямых и задержанных сигналов.

Сигналы на выходы микросхемы поступают через буферные усилители, уменьшающие степень воздействия входных цепей микросхемы TDA8362 (или другой) на работу ФНЧ. Схема тактируется внутренним тактовым генератором на частоту 3 мгц такая частота необходима для формирования задержки в 64 мкс. Линия задержки выполнена на двух строковых запоминающих устройствах, раздельных для каждого цветоразностного сигнала. С них сигналы поступают на устройства дискретизации с запоминанием отсчетов, и далее на ФНЧ, подавляющие тактовые сигналы.

Внутренний генератор синхронизируется универсальным строб-импульсом, поступающим на вывод 5 от TDA8362. Микросхема подавляет перекрестные помехи яркость-цветность.

Электрические параметры TDA4661 (TDA4665):

Напряжение питания на первом выводе............................................ 5,3...6В
Ток потребления по первому выводу................................................. 2 мА
Напряжение питания на втором выводе.......................5.3...6В, ток 8 мА.
Значение входного сигнала R-Y PAL от пика до пика...................... 0,525 В
Значение входного сигнала B-Y PAL от пика до пика....................... 0,675 В
Значение входного сигнала R-Y SECAM от пика до пика..................1,05 В
Значение входного сигнала B-Y SECAM от пика до пика..................1,35 В
Усиление сигналов PAL................................5,5 дб, SECAM.............. (-0,5дб).