Радиоволновой неразрушающий контроль. Радиоволновые методы и средства. Методы радиоволнового контроля на свч

Радиоволновой метод основан на зависимости прошедшего или отражённого радиоизлучения, от параметров и характеристик диэлектрических материалов (пластмасс, резины, стеклопластиков, термоизоляционных материалов, фанеры, зерна, песка и пр. материалов). В радиоволновом методе используется диапазон длин волн , который называется диапазоном сверх высоких частот. Электромагнитная волна представляет собой совокупность электрического Е и магнитного Н полей, распространяющихся в определённом направлении Z. В свободном пространстве электромагнитные волны поперечны, т.е. векторы Е и Н перпендикулярны направлению распространения.

Вектор Е определяет поляризацию электромагнитного поля (её амплитуду). Исходя из этого, волна может быть плоско поляризована (линейно поляризована), электрически поляризована, круговой поляризации (правой или левой поляризации, правая – по часовой стрелке, левая – против часовой стрелки). Напряжённость магнитного поля Н проверяется в её изменении по амплитуде в зависимости от магнитной проницаемости используемого материала. Н может меняться от нуля до максимального значения, что используется в методах электрического парамагнитного резонанса и в ядерных методах резонанса. Это позволяет исследовать слабые взаимодействия внутри вещества с применением этих методов.

Принципы построения радиоволновых

приборов неразрушающего контроля .

В радиоволновом методе используется диапазон длин волн от 1 до 1 мм, который называют диапазоном сверхвысоких частот (СВЧ). При прохождении сигнала через контролируемую среду, последняя влияет на его характеристики. Если контролируются диэлектрические материалы, то в качестве характеристик используют диэлектрическую постоянную и тангенс угла потерь ; при контроле полупроводниковых материалов оценивают диэлектрическую постоянную и магнитную проницаемость ; при контроле электропроводных материалов исследуют проводимость . Приборы радиоволнового контроля можно разделить на фазовые, амплитудно-фазовые, поляризационные, резонансные, спектральные, частотные, лучевые, преобразовательные. Все эти приборы основаны на использовании явлений отражения, прохождения, поглощения, преломления, поляризации и преобразования радиоволнового излучения. Для измерения степени влияния среды на сигнал применяются амплитудно-фазовые приборы. Схема прибора приведена на рисунке 1.



Приборы подобного типа содержат излучательную антенну 4 и приёмную антенну 6, источник генерации СВЧ1, вентиль 2, аттенюатор 3,7, с помощью которого можно ослабить излучение, детектор 8 и блок обработки и выдачи информации 9. После прохождения излучения через объект контроля 5 мощность сигнала будет оцениваться по формуле:

Мощность радиоизлучения, прошедшего через объект контроля ;

Площадь излучающей антенны 4;

Мощность излучающей антенны 4;

Коэффициенты прохождения радиоволны на границе раздела двух сред исследуемого материала и среды в которой он находится; , где

Длина излучающей антенны в поперечном сечении;

Расстояние от кромки излучающей антенны до поверхности испытуемого изделия 5;

Расстояние до кромки приёмной антенны от поверхности проверяемого изделия после прохождения радиоизлучения;

Толщина проверяемого изделия;

Коэффициенты отражения при падении радиоизлучения на поверхность изделия и при его выходе с поверхности изделия; , где

Волновое число;

Длина волны радиоизлучения.

Из выражения 1 видно, что при заданной мощности можно определить толщину контролируемого объекта или физические параметры . Для исключения переотражений необходимо согласовать границы с приёмной и излучающей антенной, т.е. расстояния . Радиоволновые приборы могут быть построены на принципе приёма отраженного от дефекта сигнала. Схема прибора показана на рис.2.

Принцип работы подобных приборов состоит в следующем: сигнал СВЧ генератора 1 через вентиль 2 и узел разделения 3 подаётся на излучающую антенну 4, отражённый от объекта 6 сигнал поступает в антенну 5, детектируется в элементе 7 и идентифицируется в системе 8. Особенностью приборов, основанных на приёме отражённых сигналов, является наличие связи (напряжённости электромагнитного поля радиоизлучения) между излучающей и приёмными антеннами. Эта связь реализуется за счёт части излучения антенны 4 и является опорным сигналом, с которым суммируются отражённые сигналы . Совокупность всех компонентов сигнала носит интерференционный характер, зависящий от соотношения между амплитудой и фазой отражённого сигнала и сигнала связи . Вид интерференционной картины зависит от отражённого сигнала, несущего информацию о внутренней структуре контролируемого объекта, т.е. зависит от . Радиоволновые поляризационные приборы основаны на зависимости поляризации электромагнитной волны, т.е. от ориентации вектора Е в пространстве по мере распространения её в контролируемой среде. По виду поляризации (плоская, круговая, электрическая) можно судить о внутренней структуре материала. Обычно прибор настраивают так, что при отсутствии внутренних дефектов в объекте, сигнал в приёмной антенне равен нулю. При наличии дефекта или структурной неоднородности меняется плоскость или вид поляризации излучаемого сигнала, и в приёмной антенне появляется сигнал, несущий информацию о дефектах.

В радиоволновых резонансных приборах состояние контролируемого объекта определяется по воздействию среды на добротность, смещение резонансной частоты или на распределение поля в резонаторе. На рисунке 1 представлен цилиндрический резонатор в виде схемы:

Рис. 1

Обычно резонатор 1 циклической формы диаметра , возбуждается на волне . Испытуемый образец 2 диаметра помещается внутри резонатора. В этом случае имеет место смещение резонансной частоты. По величине смещения определяется однородность этого образца и его сплошность. В случае несплошности или какого-либо дефекта внутри испытуемого объекта смещение резонансной частоты увеличивается. Этим и определяется контроль испытуемого образца.

В случае (рис.1 б) возникают разнополяризованные радиоволны. Одни с правой поляризацией, другие – с левой. Если такой резонатор положить на образец, то при наличии дефектов в образце, произойдёт изменение в поляризации радиоволны, и появятся некоторые составляющие величины этой поляризации (на рисунке это показано, как ). Измеряя положение этого значения можно найти место расположения этого дефекта и его протяжённость.

Схема работы лучевых приборов


На рис.2а) показано прохождение радиолуча через образец. Обычно используется луч миллимитрового диапазона, и его прохождение подчиняется законам геометрической оптики. В итоге по величине отклонения определяют показатель преломления и этим находят характеристику среды. Если среда однородная, то луч преломляясь выходит с противоположной стороны изделия, если же среда неоднородная, то помимо преломления происходит и отражение радиолуча, как показано на рисунке 2б). В приборах этого типа фиксируется радиоизображение внутренних дефектов.

Радиоволновые толщиномеры .

Радиоволновые методы позволяют контролировать толщину диэлектрических материалов, слоёв диэлектриков на металле и металлических листах. Информация о толщине может содержаться в амплитуде, фазе, смещении резонансной линии и резонансной кривой. Наиболее важными параметрами объекта, влияющими на прошедший или отражённый сигнал является толщина и диэлектрическая проницаемость материала. Чем однороднее материал, тем точнее измеряется толщина. Коэффициенты отражения и прохождения радиоволны для плоского однородного слоя при нормальном падении представляют собой осциллирующие функции, убывающие при возрастании толщины и отношении , где - длина волны радиолуча.

Период этих функций определяется длиной волны и показателем преломления среды. А степень убывания – коэффициентом затухания волны. На рисунке 3 приведены графики коэффициентов отражения для двух диэлектриков.

Ряд 1 – гипсобетон (); ряд 2 – оргстекло ()

Рис.4

Ряд 1 – среднее затухание ; ряд 2 – малое затухание ; ряд 3 – большое затухание ; - угол потерь.

Видно, что период осцилляции коэффициента отражения обратнопропорционален диэлектрической проницаемости. Однозначная связь между коэффициентом прохождения и толщиной имеет место при большом затухании. Появление неоднозначности при малом затухании затрудняет применение толщинометров, основанных на прохождении волны. В качестве примера рассмотрим толщиномер для измерения толщины прокатываемого металлического листа.

Толщиномер для измерения толщины

прокатываемого металлического листа.

1- узел для обработки сигналов и выдачи их на индикацию и управление

2- генератор СВЧ 10 -линза

3- тройник 11- измеряемый объект

4- вентиль 12- линза

7- подстроенный закорачивающий плунжер 15 - закорачивающий плунжер

9- антенна излучающая (рупор) 17 – согласующая нагрузка

18 – вентиль

В приборах этого назначения имеет место зеркальное отражение электромагнитной волны от поверхности контролируемого объекта, при этом на самой поверхности устанавливается пучность тока и узел напряжения. При измерении толщины объекта меняется построенная картина поля, что отмечается прибором. Генерируемые сигналы СВЧ через тройник 3 и вентили 4 и 18 поступает на ответвление 8 и 14, а затем на рупорные антенны 9 и 13 с линзами 10 и 12. Сигналы, отражаясь от поверхности измеряемого объекта 11, образуют стоячие волны. Резонаторы отражённых волн настраивается в резонанс посредством короткозамкнутых плунжеров 7 и 15.

Рис.5

Радиоволновые влагомеры.

Методы измерения влажности материалов основаны на поглощении и рассеянии радиоволн молекулами воды в области СВЧ. Информативными параметрами являются амплитуда, фаза и угол поворота плоскости поляризации электромагнитной волны. Известно, что в области СВЧ имеет место резонансное поглощение. Кроме того диэлектрическая постоянная воды в указанной области частот меняется от 80 до 20, тогда как эта величина для других материалов лежит в пределах 2-9. Это обстоятельство позволяет использовать радиоволновый метод для устройства влагомеров разного назначения. На рисунке 6 приведены зависимости диэлектрических проницаемостей от частоты.

Ряд 1 – проницаемость , ряд 2 – проницаемость .

Для измерения соединения влаги используется амплитудный влагомер, который основан на ослаблении мощности прошедшего через объект сигнала, его схема приведена на рисунке 2. В области слабосвязанной влаги коэффициент прохождения сигнала пропорционален содержанию воды.

Амплитудный влагомер.

1- генератор СВЧ 9 – устройство управления преобразованиями

2- вентиль 10 – устройство индикации

3- тройник волноводный 11 - детектор

4- антенна излучающая 12 - плунжер закороченный

5- антенна приёмная 13 – усилитель

6- преобразователь

7- плунжер закороченный

8- детектор

Амплитудно-фазовый влагомер.

1- Генератор СВЧ 5 – антенна приёмная

2- Переменные преобразователи 6 – устройство согласования нагрузки

3- Тройник 7 – тройник волноводный

4- Антенна излучающая 8 – индикатор

9 – усилитель 10 – детектор

Прибор работает на принципе сравнения сигнала, прошедшего через влажный объект, и сигнала прошедшего по волноводному тракту. В волноводном тройнике 7 сигналы сравнивают по амплитуде и фазе. Разностный сигнал после усилению индицируется в устройстве 8.

Радиоволновые дефектоскопы.

Эти приборы применяются для контроля трещин, воздушных включений, инородных включений, неоднородностей, дефектов склеивания и т.д. в диэлектрических материалах. Радиоволновые дефектоскопы строятся на принципе пропускания или отражения волны, которая несёт информацию о толщине слоёв и показателе преломления, т.е. о физических параметрах слоёв (плотность, пористость, влажность, состав и т.д.) на рисунке 9 в качестве примера приведены схема дефектоскопа с механическим сканированием.

При взаимодействии с материалом изделия изменяются такие параметры микрорадиоволн, как коэффициенты прохождения и отражения, ослабление, рассеяние, фаза, вид и плоскость поляризации. Изменения этих величин при прохождении микрорадиоволн через контролируемое изделие или отражении от него характеризуют внутреннее состояние изделия, в частности наличие различных дефектов (расслоение, пористость, трещины, инородные включения, неравномерность распределения связующего, нарушение структуры и т.д.). Одной из основных задач микрорадиоволнового метода является обнаружение этих дефектов в полимерных материалах и особенно в материалах, являющихся непрозрачными для видимого диапазона длин волн .

В настоящее время в промышленности применяются конструкции из полимерных материалов самых различных конфигураций. Это могут быть плоские однои многослойные плиты, изделия цилиндрической и шарообразной формы, изготовленные различными способами, клеевые соединения. Для каждого типа изделия необходимо выбрать метод контроля и режим работы дефектоскопа.

Радиоволновые методы в зависимости от способа ввода и приема СВЧ-сигнала подразделяют на волноводные, резонаторные и свободного пространства. Однако наибольшее распространение в практике неразрушающего контроля получили методы свободного пространства. Это обусловлено тем, что волноводные и резонаторные методы связаны с необходимостью помещения контролируемого изделия или образца внутрь волновода. Размеры внутренней полости волновода или резонаторов, особенно на малых длинах волн, существенно ограничивают номенклатуру изделий, контролируемых данными методами.

Из радиоволновых методов СВЧ свободного пространства используются амплитудный, фазовый, поляризационный, рассеяния. По режиму работы они подразделяются на методы «на прохождение» и

«на отражение». Выбор режима работы обусловлен конструкцией изделия и прозрачностью стенок.

Амплитудный метод контроля основан на регистрации интенсивности прошедших через изделие или отраженных от него микрорадиоволн. Измеряемыми величинами при амплитудном методе контроля являются коэффициенты прохождения и отражения, показатель затухания. Эти коэффициенты связаны с диэлектрической проницаемостью и толщиной стенки контролируемого изделия.

Коэффициенты прохождения и отражения находят из уравнений Максвелла для однои многослойных сред при введении в эти уравнения нормального импеданса, под которым понимается отношение тангенциальных составляющих электрического и магнитного полей. Для случая, когда вектор напряженности электрического поля E параллелен границе раздела рассматриваемой среды, импеданс равен

i cos 

а для случая, когда вектор напряженности магнитного поля H параллелен границе раздела

В идеальных условиях в волноводе устанавливается режим бегущей волны, который характеризуется тем, что если какой – либо измеритель электрической напряженности полей перемещать вдоль волновода, то индикаторный прибор будет показывать одно и то же значение вне зависимости от его местоположения.

Но, как правило, создать идеальные условия распространения не удается, и поэтому полная картина

поля образуется из совокупности волн, распространяющихся от генератора к нагрузке, и волн, распространяющихся в обратном направлении – от любой неоднородности к генератору. При этом в волноводе устанавливается режим стоячих волн. Любая волноводная линия характеризуется коэффициентом стоячей волны напряжения (КСВН), который в идеальных условиях должен быть равен 1. Практически волноводные линии с КСВН = 1,02 … 1,03 считаются достаточно хорошими.

Свойства стоячих волн и возможность установления связи между наблюдаемыми явлениями и характеристиками неоднородности, вызывающей отражение, имеют большое практическое значение и рассмотрены ниже.

Если максимальное напряжение, отмечаемое прибором Umax, а минимальное Umin то величина, называемая коэффициентом стоячей волны напряжения равна

Значение r можно выразить через отношение падающей и отраженной волн:

U пад  U отр

U пад − U отр

Отношение Uотр / Uпад определяемое из этого уравнения, называется коэффициентом отражения Г. В общем случае этот коэффициент представляет собой комплексное число. Уравнение для r может быть записано в следующей форме:

Для расчета коэффициента стоячей волны напряжения и коэффициента отражения по результатам измерений Umax и Umin существует специальная линейка.

Чтобы избежать больших потерь мощности, добиться стабильной работы генератора и получить точные результаты измерений, необходимо тщательно следить за соединением волноводов с помощью

фланцев. Основные требования: одинаковые размеры волноводов, высокая их соосность и недопущение зазора между фланцами, если они не имеют специальных согласующих устройств.

Благодаря возможности изгибать волноводы в любых плоскостях (изгиб в плоскостях Е или Н)

можно создавать приборы, обеспечивающие проведение контроля в труднодоступных местах. Для достижения хорошего согласования изгибов с волноводным трактом необходимо, чтобы радиус закругле-

ния изгиба был равен или больше

2 в. Это справедливо и для так называемых скруток, т.е. волновод-

ных элементов, обеспечивающих поворот плоскости поляризации на 45° или 90°.

При этом надо иметь в виду, что каждый волноводный тракт рассчитывается на диапазон длин волн. Поэтому условия согласования и коэффициент стоячей волны рассчитывают с учетом перестраиваемого диапазона по длинам волн.

Для проведения исследований часто бывает необходимо смещать антенные устройства на некоторое расстояние, не меняя положение остальных частей тракта. Это может быть достигнуто за счет гибких волноводов. Если в сантиметровой технике имеются гибкие гофрированные волноводы, то в миллиметровом диапазоне можно с успехом воспользоваться длинным куском волновода, согнутым буквой

Классификация приборов. Приборы радиоволнового контроля могут быть классифицированы по различным признакам.

4 По информативному параметру различают приборы:

– амплитудные;

– фазовые;

– амплитудно-фазовые;

– поляризационные;

– резонансные;

– лучевые;

– частотные;

– преобразовательные (вид волны);

– спектральные.

5 По схемам расположения приемника и излучателя энергии СВЧ относительно контролируемого образца могут быть:

– на прохождение (двусторонний доступ);

– на отражение (односторонний доступ);

– комбинированные.

6 Различают следующие формы образования сигнала:

– аналоговую;

– дифракционную;

– оптическую.

Основными физическими параметрами в приборах являются коэффициенты отражения, прохождения, поглощения, преломления, поляризации, преобразования.

Ниже приведены основные особенности приборов, построенных на разных принципах.

Приборы амплитудно-фазовые «на прохождение». В этом случае внутренне состояние объекта контроля определяется по воздействию среды на сигнал, прошедший через образец.

Принципиальная схема метода приведена на рис. 1.7. Основой метода являете наличие двух антенн (приемной и излучающей), находящихся по разные стороны объекта контроля и, как правило, соосных между собой.

В основном существуют две принципиальные блок-схемы приборов, в которых применен метод «на прохождение» (рис. 1.8).

Принцип работы схемы, в которой все элементы обозначены сплошной линией заключается в следующем. Энергия СВЧ от клистронного генератора 2 подается через вентиль 3 в волновод и аттенюатор

4 к излучающему рупору 5. Энергия проходит через образец 10, принимается приемной антенной 6 и через измерительный аттенюатор попадает на детектор 7, после чего сигнал усиливается и подается на индикаторный прибор 8.

Рис. 1.7 Принципиальная схема образования сигнала в схеме «на прохождение»:

l0 – длина рупора; l1 – расстояние от края излучающего рупора до первой поверхности; l2 – расстояние от второй поверхности до приемного рупора;

h – толщина контролируемого изделия; r1,2 – коэффициент отражения от первой и второй границ; g1,2 – коэффициент прозрачности первой и второй границ;

Е1 – излученная волна; Е2 – волна в образце; Е3 – принимаемая волна

Рис. 1.8 Блок-схема амплитудно-фазовых приборов, работающих по схеме «на прохождение»:

1 – блок питания; 2 – источник энергии СВЧ; 3 – развязывающий элемент

(ферритовый вентиль); 4 – аттенюатор; 5 – излучающая антенна;

6 – приемная антенна; 7 – детектор; 8 – блок обработки информации;

9 – фазовращатель; 10 – объект контроля

Такая схема позволяет проводить контроль свойств материала по величине затухания энергии СВЧ в образце, отсчитываемого по шкале аттенюатора, с помощью которого величина сигнала индикаторного устройства прибора поддерживается на постоянном уровне.

Для большинства практических случаев мощность принимаемого сигнала можно определять но формуле

Р  2 g1 g 2  (l  h) 2  (l  3h) 2 − (l  h)(l  3h)

где Р0 – излучаемая мощность; l = l1 + l2 + l3;

фициенты отражения и прохождения.

2  диэл

– волновое число в образце; r1, r2, g1, g2 – коэф-

Схему, в которой часть элементов отмечена пунктиром, часто называют интерферометром с открытым плечом. В этой схеме прошедший сигнал сравнивается по амплитуде и фазе с опорным, подаваемым через аттенюатор 4 и фазовращатель 9. Такая схема обладает более высокой информативной емкостью, чем первая, но в ряде случаев, когда объект контроля имеет большие размеры, ее трудно осуществить.

Чтобы исключить влияние переотражений, необходимо согласовать границы раздела с приемной и излучающей антеннами, т.е. исключить появление стоячей волны.

Приборы амплитудно-фазовые «на отражение». Внутреннее состояние объекта контроля определяется по воздействию среды на сигнал, отраженный от дефекта или поверхности образца.

Принципиальная схема метода приведена на рис. 1.9. Основой метода является одностороннее расположение приемной и излучающей антенн. Существуют две блок-схемы приборов, работающих по методу «на отражение» (рис. 1.10).

Принцип работы таких схем заключается в следующем. Энергия СВЧ клистронного генератора 2 через вентиль 3 подается на излучающую антенну 5. Отраженный сигнал (обычно сумма всех отраженных сигналов) попадает либо на ту же антенну (рис. 1.10, а) и с помощью соответствующих

Рис. 1.9 Принципиальная схема образования сигнала в амплитудно-фазовых приборах, работающих по схеме «на отражение»:

l0 – длина рупора; l – расстояние от среза рупора до поверхности;

h – толщина образца; Е1 – сигнал связи приемной и излучающей антенн;

Е2 – сигнал, отраженный от первой границы; Е3 – сигнал, отраженный

от второй границы; Е4 – сигнал, отраженный от дефекта

Рис. 1.10 Блок-схема амплитудно-фазовых приборов,

работающих «на отражение»:

а – однозондовый вариант; б – двуантенный вариант: 1 – блок питания;

2 – источник энергии СВЧ; 3 – развязывающий элемент; 4 – узел разделения излучаемого и принимаемого сигала (двойной волновой тройник, направленный ответвитель, щелевой мост и т.п.); 5 – излучающая (приемная) антенна; 6 – детектор; 7 – индикаторный прибор; 8 – объект контроля

волноводных элементов подается на детектор 6, либо в другую приемную антенну 5 (рис. 1.10, б), детектируется, обрабатывается и подается на индикаторный прибор 7.

Основной особенностью приборов является существование связи между излучающей и приемной антеннами (Е1), которая определяется конструктивным оформлением антенн. В однозондовом варианте связь существует за счет попадания части мощности генератора в детекторную секцию по внутренним волноводным трактам. В двухзондовом варианте связь наблюдается за счет попаданий части излученной мощности в приемную антенну.

Конструктивная связь является по существу опорным сигналом, с которым суммируется отраженный сигнал. Для различных задач эта связь может быть полезной и мешающей. Так, для выделения сигнала только от дефекта компоненты сигнала должны быть исключены. В этом случае выявляемость дефекта зависит только от чувствительности приемника, и на показание прибора не влияет изменение расстояния от образца до антенны.

В случае наличия всех компонентов сигнала форма сигнала от расстояния носит ярко выраженный интерференционный характер, который зависит от соотношения между амплитудой и фазой сигналов отраженного и связи. Отраженный сигнал зависит от структуры излученного поля, свойств контролируемого образца и от расстояния l.

Отличие электромагнитных свойств дефектной области от бездефектной является причиной изменения амплитуды и фазы отраженного сигнала. Это приводит к изменению вида интерференционной

кривой. Возможность регистрации дефекта основана на существовании разности интенсивностей ∆l

при заданном положении антенны (при данном расстоянии между поверхностью образца и антенной).

Следует иметь в виду, что в точках, соответствующих точкам пересечения двух интерференционных кривых, невозможно обнаружить дефект, т.е. могут существовать зоны необнаружения. Их ширина

∆l определяется тем минимальным значением сигнала, которое может быть зафиксировано системой

регистрации.

Приборы поляризационные. Внутреннее состояние объекта контроля определяется по воздействию на вектор поляризации сигнала.

В приборах могут быть использованы схемы «на прохождение» и «на отражение». Принципиальным положением является такое начальное взаимное расположение плоскостей поляризации излучающей и приемной антенн, когда сигнал в приемной антенне равен нулю. Только при наличии дефекта или структурной неоднородности, меняющих плоскость поляризации излученного сигнала или меняющих вид поляризации (от плоскопараллельной к эллиптической или круговой), в приемной антенне появляется сигнал.

Следует иметь в виду, что среда может оказывать воздействие на направление вращения плоскости поляризации (левое и правое), что также может служить информативным параметром.

Приборы резонансные. В этом случае внутреннее состояние объекта контроля определяется по воздействию среды на изменение таких резонансных параметров, как добротность Q, смещение резонансной частоты fрез, распределение поля в резонаторе.

Наибольшее распространение получил цилиндрический резонатор, возбуждаемый на волне типа H01

Преимуществом такого резонатора является возможность использования образцов достаточно больших диаметров и его перестройки с помощью подвижного поршня, особенно бесконтактного.

Приборное преобразование вида волны. Метод основан на том, что волна высшего вида при встрече с дефектом (неоднородностью) «вырождается», т.е. преобразуется в волну основного вида, которая проходит через соответствующий фильтр. В этом случае могут быть использованы схемы

«на отражение», и «на прохождение». Принцип преобразования обеспечивает высокую избирательность по дефектам.

Рис. 1.11 Схема цилиндрического резонатора возбуждаемого на волне типа Н01:

а – распределение поля; б – расположение образца; 2b – диаметр образца;

2а – диаметр резонатора; l – высота резонатора и образца

Лучевые приборы. Внутреннее состояние объекта контроля определяется по воздействию среды на направление распространения электромагнитной волны. В приборах используются принципы геометрической оптики, главным образом закон Снелиуса. В этом случае могут быть применены схемы «на отражение» и «на прохождение» (рис. 1.12).

Полезный сигнал является функцией выхода (точка а) из образца сигнала СВЧ.

Квазиоптические приборы. Радиоизображение, сформированное с помощью радиооптических систем (линз, зеркал, объективов), содержит всю информацию об объекте контроля и обеспечивает получение видимого изображения в образах, близких к естественным.

Радиоизображение может быть получено как методом «на отражение», так и методом «на прохождение» (рис 1.13).

Квазиоптический метод может быть использован для исследования близко расположенных объектов (расстояние от плоскости приема до объекта порядка 1 … 4 м) и удаленных на расстояние более 80

Метод применим для волн, длина которых меньше 3 см.

Приборы, работа которых основана на радиоголографическом методе. В этом случае внутреннее состояние объекта контроля определяется либо по интерференционной картине, либо по восстановленному изображению. Первый случай обычно используют для получения информации при сравнении детали с эталоном. Во втором случае анализируют видимое изображение.

2

Приборы с использованием нескольких частот. В этом методе внутреннее состояние объекта контроля определяется либо по сдвигу резонансной частоты поглощения, либо при сравнении двух или более частот, либо на основе анализа спектра частот.

Основой частотного метода является использование одновременно излучаемого широкого спектра

частот или изменения частоты в определенном интервале, когда полезный сигнал пропорционален изменению амплитуды, частоты, ее смещению по электромагнитному спектру, выделению разностной частоты на нелинейном элементе. Метод может быть совмещен с методами «на отражение» и «на прохождение».

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Одной из важнейших проблем трубопроводного транспорта является сохранение нормального состояния линейной части промысловых и магистральных трубопроводов. Подземные трубопроводы, работающие при нормальных режимах, сохраняются, по крайней мере, несколько десятков лет. Так, например, в США некоторые трубопроводы, проработавшие около двадцати лет, полностью сохранились и не требуют ремонта. Этому способствовало то большое внимание, которое уделяется систематическому контролю состояния подземных и надземных трубопроводов и своевременная ликвидация появляющихся дефектов.

Как правило, большинство дефектов на трубопроводах появляются в результате коррозионных и механических повреждений, определение места и характера которых связаны с рядом трудностей и большими материальными затратами. Совершенно очевидно, что вскрытие трубопровода для его непосредственного визуального обследования экономически неоправданно. К тому же обследовать можно только внешнюю поверхность трубопровода. Поэтому в течение последних лет в нашей стране и за рубежом усилие специализированных научно-исследовательских и проектных организаций направлено на решение проблемы определения состояния подземных и надземных промысловых, магистральных нефтепродуктопроводов без их вскрытия. Эта проблема связана с большими техническими трудностями, однако при использовании современных методов и средств измерительной техники она успешно решается.

В работе мы рассмотрим один из методов, который обеспечивает выявление дефектов.

1. Особенности радиоволнового метода

Радиоволновой неразрушающий контроль основан на регистрации изменения параметров электромагнитных колебаний СВЧ, взаимодействующих с объектом исследования. Диапазон длин волн, преимущественно используемый в радиоволновом контроле, ограничен 1 - 100 мм. Более освоены и обеспечены измерительной аппаратурой 3-см и 8-мм поддиапазоны.

Радиоволновой контроль применяют для решения всех типовых задач неразрушающего контроля: толщинометрии, дефектоскопии, структуроскопии и интроскопии (контроля внутреннего строения). Используемая при этом аппаратура, как правило, построена на базе стандартных или модернизированных элементов СВЧ. Специальным элементом при решении конкретной задачи может быть источник или приемник излучения, а также приспособление для крепления и перемещения объекта.

Среди других особенностей радиоволнового контроля по сравнению с оптическим и радиационным следует отметить использование импедансного метода для расчета параметров сигналов и соизмеримость длины волны излучения с размерами радиоволнового тракта «источник излучения - объект контроля - приемник излучения».

Излучения СВЧ относятся к области радиоволн, которые с момента своего открытия использовались для передачи информации. Применение волн СВЧ для целей НК потребовало создания теории их взаимодействия с объектом контроля. Вполне естественно, что в разработанной теории были учтены результаты, полученные в радиосвязи для волновых систем с распределенными параметрами (длинных линий, волноводов и др.) импедансным методом, в котором радиоволновой тракт «источник излучения - объект контроля - приемник излучения» заменяется моделью в виде длинной линии. При этом канал распространения колебаний СВЧ (двухпроводные линии, волноводы, свободное пространство) характеризуют волновым сопротивлением. Для идеального диэлектрика оно вещественно при е r =1 равно z 0 =377 Ом.

Отношение г/(ще a )=tgд называют тангенсом угла диэлектрических потерь и относят к важнейшим параметрам диэлектриков. Здесь г - удельная электрическая проводимость; щ - угловая частота. На одной частоте (tgд < 0,01) материал может считаться диэлектриком, на другой (tgд > 100) - проводником. При расчетах к идеальным диэлектрикам относят материалы, для которых tgд < 0,01. На частотах, меньших 9x10 6 Гц, морскую воду относят к классу диэлектриков; на частотах, больших 9x10 10 Гц, - к классу проводников. В промежуточной области 0,001 < tgд < 100 материал называют несовершенным диэлектриком, характеризующимся комплексной диэлектрической проницаемостью и комплексным волновым сопротивлением.

Для проводников мнимая часть комплексной диэлектрической проницаемости велика по сравнению с вещественной частью: е">>е a и волновое сопротивление определяется выражением z c будет равно квадратному корню из отношения (щм a) / г. С ростом частоты, z c увеличивается и, волны не могут глубоко проникать в проводник. Явление экранирования наружными слоями материала глубинных слоев от проникновения поля называют скин-эффектом. Он характеризуется глубиной проникновения плоской волны, на которой напряженность полей Е и Н уменьшается в е раз.

Скорость распространения электромагнитной волны в несовершенном диэлектрике зависит от частоты так как е"=г /щ. Величина v характеризует скорость перемещения точек, сохраняющих одну и ту же фазу волны. Зависимость v=f(щ) называют дисперсией. Через скорость находится длина волны л=vT v .

При переходе электромагнитной волны из одной среды в другую по нормали к граничной поверхности формируется отраженная волна. При наложении обеих волн образуется стоячая волна, характеризуемая коэффициентом стоячей волны по напряжению k стU = E max / E min или коэффициентом бегущей волны по напряжению k дu = l / k стU . Максимумы стоячей волны получаются там, где действующие значения напряженности падающей и отраженной волн складываются, а минимумы - там, где они вычитаются.

Параметры проводящих материалов на частоте 10 10 Гц

Приведенные формулы указывают на возможность получить требуемый результат, основываясь на законах геометрической оптики или теории длинных линий. При применении второго подхода для расчета параметров сигналов СВЧ реальную систему «источник излучения - объект контроля - приемник» заменяют моделью в виде длинной линии с такими же волновыми сопротивлениями и размерами, как в реальной системе. Вариант построения такой модели показан ниже. Электромагнитные параметры слоев изделия (е i , м i , г i) учитываются через комплексные волновые сопротивления Z i отрезков длинной линии. Входное сопротивление приемника и выходное сопротивление источника излучения (генератора) учитываются волновыми сопротивлениями Z п и Z г.

Дефект в виде расслоения заменяется в модели плоскопараллельным слоем такой же толщины, как дефект. Амплитуда сигнала от дефекта уменьшается пропорционально площади, занимаемой дефектом относительно площади контролируемой зоны.

Соизмеримость длины волны излучения СВЧ с размерами элементов радиоволнового тракта обусловливает сложный характер электромагнитного поля в системе контроля. По этой причине методика оценки сигналов в системе имеет характерную особенность. Если расстояние между границами различных однородных сред, составляющих исследуемый объект, превышает длину волны в материале, компоненты электромагнитной волны оценивают на основе законов геометрической оптики.

В противном случае предпочтительнее применение импедансного метода. В обоих случаях получаемые оценки сигналов в системе приближенные и не исключено появление больших ошибок. Поэтому рекомендуется пользоваться расчетным методом для определения относительных значений величин - изменения амплитуд сигналов при малых изменениях параметров исследуемого предмета или условий контроля. Что касается абсолютных значений сигналов, их следует оценивать экспериментально.

Коротко остановимся на методах и средствах радиоволнового контроля. Если контролируемая величина непосредственно связана с напряженностью поля (мощностью) отраженного, прошедшего или рассеянного излучения, используется амплитудный метод контроля. Техническая реализация метода проста, однако невысокая помехоустойчивость ограничивает его применение. Более надежные результаты получают, используя фазовый и амплитудно-фазовый методы, основанные на выделении полезной информации, заключенной в изменениях амплитуды и фазы волны. Для выделения этой информации в аппаратуру контроля вводят опорное плечо «источник - приемник излучения» и схему сравнения сигналов от объекта контроля с опорным.

Если толщина объекта превышает длину волны используемого зондирующего излучения, рекомендуется для ее измерения использовать геометрический или временной метод. В первом случае контролируемый параметр связан с отклонением положений отраженного луча в плоскости регистрации относительно выбранной системы координат, во втором - с изменением задержки сигнала во времени.

Для контроля тонкопленочных и анизотропных материалов применяют поляризационный метод, основанный на анализе изменений плоскости или вида поляризации колебаний после взаимодействия излучения с ОК. Перед испытаниями приемную антенну разворачивают до тех пор, пока сигнал на ее выходе от образцового ОК не станет равным нулю. Сигналы от испытываемых ОК характеризуют степень отклонения их свойств от образцового.

Голографический метод дает хорошие результаты при контроле внутреннего строения ОК, однако из-за сложности его аппаратурной реализации метод имеет ограниченное применение.

Радиоволновой контроль по прошедшему излучению позволяет обнаружить дефекты изделия, если их параметры м a и е a значительно отличаются от аналогичных параметров основного материала, а размеры соизмеримы или превышают длину волны зондирующего излучения. В простейшем варианте такого контроля в приемном тракте поддерживают режим бегущей волны. Наиболее полную информацию дает применение многоэлементных антенн, поскольку в этом случае удается воспроизвести внутреннюю структуру объекта. Для повышения разрешающей способности дефектоскопии используют метод самосравнения. Он реализуется с помощью двух комплектов излучающих и приемных устройств, максимально приближенных друг к другу. Результирующий сигнал определяется разностью амплитуд и фаз сигналов приемников каждого канала. Наличие дефекта приводит к изменению условий распространения волны в одном канале и появлению разностного сигнала. Анализ динамики изменения сигнала при периодическом прохождении дефекта через зону контроля радиоволнового дефектоскопа позволяет снизить порог его чувствительности.

Резонансный метод радиоволнового контроля основан на введении ОК в резонатор, волновод или длинную линию и регистрации изменений параметров электромагнитной системы (резонансной частоты, добротности, числа возбуждаемых типов колебаний и т.д.). Этим методом контролируются размеры, электромагнитные свойства, деформации и другие параметры. Успешно используется резонансный метод для контроля уровня жидкостей в резервуарах и параметров движения различных объектов.

Радиоволновые средства неразрушающего контроля - это датчики с чувствительным элементом, в котором контролируемая величина преобразуется в информативный параметр; генераторы СВЧ - источники электромагнитных колебаний; вторичные преобразователи предназначены для формирования сигналов регистрации и управления.

радиоволновой контроль неразрушающий дефектоскопия

2. Источники и приемники радиоволнового излучения СВЧ

Колебания СВЧ могут быть получены с помощью генераторов магнетронного типа, ламп обратной волны, отражательных клистронов, квантово-механических генераторов и полупроводниковых приборов. Наибольшее применение находят клистроны, затем следуют магнетроны, лампы обратной волны и полупроводниковые генераторы.

Отражательные клистроны широко применяют в качестве задающих генераторов в радиолокационных станциях, в усилительных цепочках маломощных передатчиков, в радиорелейных линиях связи, маломощных генераторах СВЧ непрерывного или импульсного излучения в передающих устройствах малого радиуса действия (радиодальномеры, радиомаяки, ответчики), а также как маломощные генераторы в измерительной и малогабаритной аппаратуре благодаря ряду преимуществ перед другими маломощными генераторами СВЧ. Это, в частности, низкий уровень флюктуационных шумов, простота эксплуатации и высокая надежность при изменении в широких пределах условий эксплуатации. Выпускаемые отражательные клистроны малой мощности (до 100 мВт) перекрывают широкий диапазон длин волн, вплоть до субмиллиметровых. Некоторые типы клистронов требуют принудительного воздушного охлаждения, особенно предназначенные для работы в коротковолновой части миллиметрового диапазона, когда принципиально трудно повысить их кпд. К сожалению, тепловые уходы частоты преобладают над всеми другими и присущи любому типу генераторов СВЧ.

Магнетронные генераторы охватывают широкий диапазон частот и обеспечивают большой диапазон мощностей в импульсе: от единиц ватт до десятков мегаватт. Они находят широкое применение в радиоэлектронной аппаратуре в качестве задающих генераторов, источников мощности СВЧ и т.д. Однако в последнее время намечается отказ от их широкого использования вследствие большой нестабильности генерируемой частоты и тепловых уходов частоты. Кроме того, наличие постоянных магнитов увеличивает массу магнетронов, для питания требуются высокое напряжение и интенсивное охлаждение (путем обдува) резонатора.

Лампы обратной волны (ЛОВ) относятся к классу широкодиапазонных генераторов колебаний СВЧ с электронной перестройкой частоты. Выпускается большое число типов ЛОВ, перекрывающих диапазон волн от 60 см до десятых долей миллиметра. Для фокусировки электронного луча в ЛОВ в основном применяют постоянные магниты трубчатой формы. Такие ЛОВ выпускаются в виде пакетированной конструкции, в которой объединены корпус ЛОВ, постоянный магнит и юстирующее приспособление. Поэтому нормальная работа ЛОВ может быть нарушена при наличии внешних магнитных полей или расположенных поблизости от ЛОВ ферромагнитных материалов. Как правило, расстояние между ЛОВ и подобными материалами должно быть не менее 400 мм. Режим работы ЛОВ сильно зависит от внешних условий (температуры, влажности), а также согласования с нагрузкой.

Лампы обратной волны особенно критичны к изменению температуры среды. При воздействии на лампы обратной волны механических ударов и вибраций происходят периодические изменения расстояния между отдельными электродами электронной пушки либо их поперечные смещения относительно друг друга, что сопровождается амплитудной и частотной модуляцией генерируемых колебаний. Девиация частоты ЛОВ при вибрациях обычно несколько больше, чем у клистронов. К недостаткам ламп данного типа относится также то, что данные лампы, находившиеся на хранении и длительное время (более двух месяцев) не включающиеся, должны быть подвергнуты тренировке, которая занимает не менее 1,5 ч. Генераторы на основе ЛОВ, как и все генераторы СВЧ с широким диапазоном электронной перестройки частоты, не обладают высокой стабильностью частоты при работе в какой-либо точке диапазона.

Эффективный автогенератор сантиметровых и миллиметровых волн может быть создан на полупроводниковом эквиваленте отражательного клистрона - лавинно-пролетном диоде (ЛПД), который служит основой ряда устройств СВЧ (генераторов, усилителей, преобразователей частоты).

В основе работы ЛПД лежит эффект генерации когерентных колебаний при лавинном пробое полупроводниковых диодов СВЧ. Получаемая при этом мощность колебаний в непрерывном режиме составляет для различных диодов от десятков микроватт до нескольких милливатт при длине волны 0,8-10 см. Генератор состоит из лавинно-пролетного диода и полого резонатора, связанного с полезной нагрузкой. Характерная особенность ЛПД - повышенный уровень шума на высоких (>10 4 ГГц) частотах. Даже в германиевых диффузионных ЛПД с однородным пробоем этот уровень на 25-30 дБ превышает дробовой шум вакуумного диода с таким же током. В кремниевых ЛПД, где пробой сопровождается микроплазменными явлениями, уровень шума может превышать на 60-70 дБ дробовой шум.

Малогабаритные генераторы сантиметрового диапазона (3-15 ГГц) обеспечивают в непрерывном режиме при токе питания 10-20 мА и напряжении 20-70 В выходную мощность от 5 до 50 мВт при кпд 3-7%. Значительный уровень высших гармоник в спектре лавинного тока позволяет использовать ЛПД сантиметрового диапазона волн для создания генераторов миллиметрового диапазона. Резонатор такого генератора целесообразно делать двух- или трехконтурным, с тем чтобы один из контуров, не связанный с полезной нагрузкой, был настроен на основную частоту в коротковолновой части сантиметрового диапазона (10-15 ГГц), а остальные - на высшие гармоники. Генераторы этого типа имеют в верхней части миллиметрового диапазона выходную мощность (в непрерывном режиме) порядка единиц милливатт. Однако спектральная плотность флюктуации амплитуды и частоты ЛПД на 15-20 дБ выше, чем у отражательных клистронов. Итак, СВЧ-устройства на ЛПД обладают такими преимуществами, как малые габариты, масса, экономичность питания и т.д. Основной их недостаток - высокий уровень шумов.

Созданы и получили также практическое применение полупроводниковые генераторы СВЧ на диодах Ганна. Они работают при низких напряжениях питания (4-8,5 В), потребляя при этом ток от 0,4 до 1,5 А.

Сравнительная характеристика некоторых типов генераторов СВЧ

Литература

1. Неразрушающий контроль. Том 6. Справочник. Под общ. ред. В.В. Клюева, Москва, 2006 г.

2. Мильман И.И. «Радиоволновой, тепловой и оптический контроль», часть 1, уч. пособие, Екатеринбург, 2001 г.

3. Ермолов И.Н., Останин Ю.А. «Методы и средства неразрушающего контроля», 1988 г., Высш. школа.

Размещено на Allbest.ru

...

Подобные документы

    Метод неразрушающего контроля состояния поверхности полупроводниковых пластин, параметров тонких поверхностных слоёв и границ раздела между ними. Методика измерений на эллипсометре компенсационного типа. Применение эллипсометрических методов контроля.

    реферат , добавлен 15.01.2009

    Сущность метода магнитной дефектоскопии. Расчет составляющих напряженности поля. Разработка автоматизированной системы магнитопорошкового контроля оси колесной пары вагон. Регулирование скорости вращения асинхронных двигателей с короткозамкнутым ротором.

    дипломная работа , добавлен 19.06.2014

    Средства регистрации и количественных измерений световой энергии. Тепловые и фотонные приемники оптического излучения: полупроводниковые болометры, термоэлементы, фоторезисторы, фото- и светодиоды; параметры, характеризующие их свойства и возможности.

    презентация , добавлен 07.06.2013

    Классификация и модели тепловой дефектоскопии. Модель активного теплового контроля пассивных дефектов. Оптическая пирометрия. Приборы теплового контроля. Схемы яркостного визуального пирометра с исчезающей нитью. Пирометр спектральных отношений.

    реферат , добавлен 15.01.2009

    Природа и характеристики магнитного поля. Магнитные свойства различных веществ и источники магнитного поля. Устройство электромагнитов, их классификация, применение и примеры использования. Соленоид и его применение. Расчет намагничивающего устройства.

    курсовая работа , добавлен 17.01.2011

    Метод высокоточной гелиевой дефектоскопии. Растворимость гелия в кристаллах с дефектами вакансионного типа. Схема термодесорбционной установки, методика измерений. Система вакуумирования, калибровки масс-спектрометра, контроля температуры ячеек насыщения.

    контрольная работа , добавлен 03.12.2014

    Технические средства визуально-оптической дефектоскопии. Технические характеристики видеокроулера Rovver 400. Выбор метода контроля и теоретическое моделирование, оценка чувствительности. Разработка структурной схемы установки, ее влияние на экологию.

    дипломная работа , добавлен 08.09.2014

    Состав элегазового электротехнического оборудования, задачи контроля его параметров. Канал контроля влажности элегаза. Мониторинг подстанционного оборудования. Диапазон величин контролируемых параметров. Конструкции системы диагностики и контроля КРУЭ.

    курсовая работа , добавлен 01.02.2012

    Общая характеристика методов, применяемых для измерения параметров капилляров фильер: голографической интерферометрии, Фурье-оптики, микроскопический. Сравнительный анализ рассмотренных методов, определение их основных преимуществ и недостатков.

    контрольная работа , добавлен 20.05.2013

    Типы источников излучения, принципы их классификации. Источники излучения симметричные и несимметричные, газоразрядные, тепловые, с различным спектральным распределением энергии, на основе явления люминесценции. Оптические квантовые генераторы (лазеры).



поляризации, частоте и т.д.

шве с подкладкой:

импедансным методом:

Методы теплового вида неразрушающего контроля:

ЛЕКЦИЯ №5 (ПРОДОЛЖЕНИЕ) ОСНОВНЫЕ МЕТОДЫ ТЕХНИЧЕСКОЙ ДИАГНОСТИКИ В ЭЛЕКТРОЭНЕРГЕТИКЕ

Характеристики методов радиоволнового вида диагностики

Радиоволновой неразрушающий контроль основан на анализе взаимодействия электромагнитного излучения радиоволнового диапазона е объектами контроля. На практике наибольшее распространение получили сверх высокочастотные. (СВЧ) методы, использующие диапазон длин волн от 1 до 100 мм. Взаимодействие радиоволн может носить характер взаимодействия только падающей волны (процессы поглощения, дифракции, отражения, преломления, относящиеся к классу радиооптических процессов) или взаимодействия падаюшей иотраженной волн (интерференционные процессы, относящиеся к области радиоголографии). Кроме того, в радиодефектоскопии могут использоваться специфическиерезонансные эффекты взаимодействия радиоволнового излучения (электронный парамагнитный резонанс, ядереный магнитный резонанс и др.). Использование радиоволн перспективно по двум причинам: достигается расширение области применения неразрушающего контроля, так как для контроля диэлектрических, полупроводниковых, ферритовых и композитных материалов радиоволновыеметоды наиболее эффективны; во вторых появляется возможность использования радиоволн СВЧдиапазона.

К числу этих особенностей относятся следующие:

1. Диапазон СВЧ позволяет получить большой интервал мощностей генерируемых волн, что удобно для контроля материалов и сред различной степени прозрачности, от весьма тонких до таких, как мощные бетонныеоснования.

2. Волны СВЧ легко получить в виде когерентных поляризованных гармонических электромагнитных колебаний, а это дает возможность обеспечивать высокую

чувствительность и точность контроля, используя интерференционные явления, возникающие при взаимодействии когерентных волн с диэлектрическим слоем.

3. С помощью СВЧ можно осуществить бесконтактный контроль качества при одностороннем расположении аппаратуры по отношению к объекту - способ контроля на отражение.

4. Волны диапазона СВЧ могут быть остро сфокусированы, что позволяет обеспечить локальность контроля, минимальный краевой эффект, помехоустойчивость по отношению к близкорасположенным предметам, исключить влияние температуры объекта контроля на измерительные датчики и т.п.

5. Информация о внутренней структуре, дефектах и геометрии содержится в большом числе параметров полезного СВЧ сигнала: амплитуде, фазе, коэффициенте

поляризации, частоте и т.д.

6.Применение радиоволн СВЧ диапазона обеспечивает весьма малую инерционность контроля, позволяя наблюдать и анализировать быстропротекающие процессы.

7. Аппаратура диапазона СВЧ может быть выполнена достаточно компактной и удобной в эксплуатации.

8. При использовании резонансных радиоволновыхСВЧ методов имеется возможность многопараметрового контроля геометрии, состава и структуры материалов в «здоровой» и «дефектной» зонах.

Преимущественная область применения методов и техники СВЧ – это измерение геометрических размеров изделий из диэлектрических, композитных, ферритовых и полупроводниковых материалов.

Рис. 2. Схема поиска дефектов ультразвуковым дефектоскопом в сварном

шве с подкладкой:

1 – начальный импульс; 2 – стробирующий импульс;

3 – эхо-сигнал от дефекта (трещины); 4 – сигналы от подкладки.

Рис. 1.7. Схема контроля многослойных конструкций акустическим

импедансным методом:

1 – хвостовой отсек лопасти несущего винта вертолета;

2 – зона отслоения обшивки; 3 – обшивка; 4 – сотовый заполнитель;

5 – клеевой слой; 6 – преобразователь с сигнальной лампочкой;

7 – стрелочный индикатор дефектоскопа;

F P – сила реакции изделия на преобразователь.

Методы теплового вида неразрушающего контроля.

Методы проведения технических экспертиз

Для проведения технических экспертиз применяют две группы методов, различающихся между собой способами проведения необходимых исследований и измерения основных характерис­тик:

· неразрушающие методы, когда все измерения производятся непосредс­твенно на объекте или на конструкции без повреждения элементов;

· разрушающие методы, связанные с отбором проб или образцов из конс­трукций и нарушением сплошности материала.

Неразрушающие методы контроля строительных конструкций широко при­меняются в процессе проведения технических экспертиз зданий и сооружений. Их используют как при приемочном контроле конструкций на заводе-изготови­теле, так и непосредственно на объекте при проведении экспертизы.

По физическим принципам исследований эти методы можно классифици­ровать следующим образом:

1) механические методы;

2) акустические методы;

3) электрофизические методы;

4) методы ионизирующего излучения;

5) радиоволновые методы;

6) тепловые методы;

7) голографические методы;

8) прочие методы.

Механические методы нашли широкое применение в строительстве благодаря своей простоте, удобству и возможности быстро выполнить провер­ку состояния материала в различных точках конструкции. Прежде всего, это оценка прочности бетона с помощью эталонных молотков К.П.Кашкарова и ИЛ.Физделя. По диаметру отпечатков, полученных при ударе молотком, по эмпирическому графику определяется прочность бетона. Для этих целей так­же широко применяются склерометры различных типов. В этих приборах о прочности бетона судят по величине отскока стального бойка. Чаще всего их используют в транспортном строительстве при обследовании мостов.

Акустические ме тоды основаны на возбуждении упругих механических колебаний. По параметрам этих колебаний определяют физико-механические характеристики исследуемого материала. В зависимости от частоты колебаний эти методы делят на ультразвуковые (частота 20 тыс. Гц и выше), звуковые (до 20 тыс. Гц) и инфразвуковые (до 20 Гц).

Используют акустические методы, главным образом, для выявления и исследования дефектов конструкций (трещин, расслоения, пустот), про­верки качества швов сварных соединений, дефектоскопии клеевых соеди­нений и стыков, определение толщин изделий из металлических сплавов, а также для определения прочностных характеристик бетона по корреля­ционным зависимостям.

Электрофизические методы обследования делят на магнитные, электрические и электромагнитные.

Магнитные методы применяют для определения дефектов в металле, контроле качества сварных швов. Их использование основано на том, что магнитный поток при наличии дефекта конструкции искривляется и рас­сеивается.


С помощью электромагнитных методов можно определить толщину металлических элементов, а также контролировать натяжение арматуры в железобетонных конструкциях. Для выявления положения и глубины за­легания арматуры в железобетонных конструкциях используются прибо­ры магнитно-индукционного типа.

Электромагнитный метод положен в основу определения влажности древесины. По замеренному электрическому сопротивлению можно су­дить о состоянии материала в конструкции, пользуясь соответствующими зависимостями между электропроводностью и влажностью для данного сорта древесины.

Неразрушающий контроль с помощью ионизирующего излучения эффективно используют в процессе обследования строительных конс­трукций для различных целей. Преимущества применения ионизирую­щего излучения заключаются в возможности быстрого и качественного получения определяемых характеристик.

Контроль рентгеновскими и гамма-излучениями применяется для оценки физико-механических характеристик материалов и качества конс­трукций. Прежде всего, с его помощью осуществляют дефектоскопию сварных соединений, а также определение упругой составляющей дефор­мации металла. В бетоне и железобетоне производится определение плот­ности, контроль однородности, а также определение положения и диамет­ра арматуры и толщины защитного слоя бетона.Для просвечивания деталей и конструкций применяют также источники нейтронного излучения . Наиболее эффективным применением нейтронов оказывается при определении влажности материалов - бетона, древесины и др.

Большие перспективы применения имеет радиоволновой метод контроля (СВЧ). С помощью приборов, разработанных на основе этогс метода, можно оценить такие характеристики, как влажность, плотность пористость строительных материалов, толщину защитного слоя в железо­бетонных конструкциях.

Также эффективно применение радиоволнового метода при контроле пластмасс, древесины (в том числе и в клееных конструкциях), бетона, железобетона и других материалов. Радиоволновой метод дает возмож­ность исследовать как начальную стадию зарождения очагов нарушения сплошности конструкций, так и ход дальнейшего развития дефектов.

Широкие перспективы при обследовании ограждающих конструк­ций имеют тепловые методы , на основе которых разработаны специаль­ные приборы - тепловизоры. Они позволяют с высокой точностью прово­дить теплофизические исследования строительных конструкций.

Принцип действия тепловизоров основан на использовании инфра­красного излучения от внешнего источника, отраженного от исследуе­мого материала или прошедшего сквозь него. Применение тепловизоров дает возможность оценить общие теплопотери здания, обнаружить усадку теплоизоляции ограждающих конструкций, исследовать температурные поля, найти пустоты в изоляции, трещины в ограждающих конструкциях, Оценить воздухопроницаемость стыковых соединений.

Перспективными для применения являются также голографические методы , позволяющие получать при изменении условий рассмотрения одной и той же заснятой голограммы объемные изображения такими, какими они видны при различном положении точки наблюдения при не­посредственном рассмотрении объекта.

Существуют и другие методы неразрушающего контроля. Наибо­лее эффективным является комплексное применение различных методов, базирующихся на разных физических принципах, взаимно дополняющих друг друга.

При всех своих достоинствах неразрушающие методы не всегда дают достаточно полную характеристику обследуемого объекта. С их помощью не всегда возможно установить все необходимые физико-механические свойства материала конструкции, а также показатели несущей способнос­ти, жесткости, трещиностойкости и др.