Основные элементы и особенности работы электрических аппаратов. Электрические аппараты — назначение, классификация, применение. Рис.2.3.Общий вид гистерезисной муфты

Электрический аппарат – это устройство, управляющее электропотребителями и источниками питания, а также использующее электрическую энергию для управления неэлектрическими процессами.

Электрические аппараты общепромышленного назначения, электробытовые аппараты и устройства выпускаются напряжением до 1 кВ, высоковольтные – свыше 1 кВ. До 1 кВ делятся на аппараты ручного, дистанционного управления, аппараты защиты и датчики.

Электрические аппараты классифицируются по ряду признаков:

1. по назначению, т. е. основной функции выполняемой аппаратом,

2. по принципу действия,

3. по характеру работы

4. роду тока

5. величине тока

6. величине напряжения (до 1 кВ и свыше)

7. исполнению

8. степени защиты (IP)

9. по конструкции

Особенности и области применения электрических аппаратов

Классификация электрических аппаратов в зависимости от назначения:

1. Аппараты управления , предназначены для пуска, реверсирования, торможения, регулирования скорости вращения, напряжения, тока электрических машин, станков, механизмов или для пуска и регулирования параметров других потребителей электроэнергии в системах электроснабжения. Основная функция этих аппаратов это управление электроприводами и другими потребителями электрической энергии. Особенности: частое включение, отключение до 3600 раз в час т.е. 1 раз в секунду.

К ним относятся электрические аппараты ручного управления - , контролеры и командокотролеры, реостаты и др., и электрические аппараты дистанционного управления - , контакторы и т. д.

2. Аппараты защиты , используются для коммутации электрических цепей, защиты электрооборудования и электрических сетей от сверхтоков, т. е. токов перегрузки, пиковых токов, токов короткого замыкания.

К ним относятся , и др.

3. Контролирующие аппараты , предназначены для контроля заданных электрических или неэлектрических параметров. К этой группе относятся датчики. Эти аппараты преобразуют электрические или неэлектрические величины в электрические и выдают информацию в виде электрических сигналов. Основная функция этих аппаратов заключается в контроле за заданными электрическими и неэлектрическими параметрами.

К ним относятся датчики тока, давления, температуры, положения, уровня, фотодатчики, а также реле, реализующие функции датчиков, например , напряжения, тока.

Классификация электрических аппаратов по принципу действия

По принципу действия электроаппараты разделяются в зависимости от характера воздействующего на них импульса. Исходя из тех физических явлений, на которых основано действие аппаратов, наиболее распространенными являются следующие категории:

1. Коммутационные электрические аппараты для замыкания и размыкания электрических цепей при помощи контактов, соединенных между собой для обеспечения перехода тока из одного контакта в другой или удаленных друг от друга для разрыва электрической цепи (рубильники, переключатели, …)

2. Электромагнитные электрические аппараты , действие которых зависит от электромагнитных усилий, возникающих при работе аппарата (контакторы, реле, …).

3. Индукционные электрические аппараты , действие которых основано на взаимодействии тока и магнитного поля ().

4. Катушки индуктивности (реакторы, дроссели насыщения).

Классификация электрических аппаратов по характеру работы

По характеру работы электрические аппараты различают в зависимости от режима той цепи, в которой они установлены:

1. Аппараты, работающие длительно,

2. предназначенные для кратковременного режима работы,

3. работающие в условиях повторно-кратковременной нагрузки.

Классификация электрических аппаратов по роду тока

По роду тока: постоянного и переменного.

Требования, предъявляемые к электрическим аппаратам

Особенно многообразны конструктивные разновидности современных аппаратов, в связи с этим различны и требования, предъявляемые к ним. Однако существуют и некоторые общие требования вне зависимости от назначения, применения или конструкции аппаратов. Они зависят от назначения, условий эксплуатации, необходимой надежности аппаратов.

Изоляция электрического аппарата должна быть рассчитана в зависимости от условий возможных перенапряжений, которые могут возникнуть в процессе работы электрической установки.

Аппараты, предназначенные для частого включения и отключения номинального тока нагрузки, должны иметь высокую механическую и электрическую износоустойчивость, а температура токоведущих элементов не должна превышать допустимых значений.

При коротких замыканиях токоведущая часть аппарата подвергается значительным термическим и динамическим нагрузкам, которые вызваны большим током. Эти экстремальные нагрузки не должны препятствовать дальнейшей нормальной работе аппарата.

Электрические аппараты в схемах современных электротехнических устройств должны обладать высокой чувствительностью, быстродействием, универсальностью.

Общим требованием по всем видам аппаратов является простота их устройства и обслуживания, а также их экономичность (малогабаритность, наименьший вес аппарата, минимальное количество дорогостоящих материалов для изготовления отдельных частей).

Режимы работы электротехнических устройств

Номинальный режим работы - это такой режим, когда элемент электрической цепи работает при значениях тока, напряжениях, мощности указанных в техническом паспорте, что соответствует наивыгоднейшим условиям работы с точки зрения экономичности и надежности (долговечности).

Нормальный режим работы - режим, когда аппарат эксплуатируется при параметрах режима незначительно отличающихся от номинального.

Аварийный режим работы - это такой режим, когда параметры тока, напряжения, мощности превышают номинальный в два и более раз. В этом случае объект должен быть отключен. К аварийным режимам относят прохождение токов короткого замыкания, тока перегрузки, понижение напряжения в сети.

Надежность – безотказная работа аппарата за все время его эксплуатации.

Свойство электрического аппарата выполнять заданные функции, сохраняя во времени значения установленных эксплуатационных показателей в заданных пределах, соответствующих заданным режимам и условиям использования, технического обслуживания и ремонтов, хранения и транспортирования.

Исполнение электрических аппаратов по степени защиты

Определяется ГОСТ 14254-80. В соответствии с ГОСТ устанавливается 7 степеней от 0 до 6 от попадания внутрь твердых тел и от 0 до 8 от проникновения жидкости.

Обозначение степеней защиты

Защита от проникновения твердых тел и соприкосновения персонала с токоведущими и вращающимися частями.

Защита от проникновения воды.

Специальная защита отсутствует.

Большого участка человеческого тела, например, руки и твердых тел размером более 50 мм.

Капель, падающих вертикально.

Пальцев или предметов длиной не более 80 мм и твердых тел размером более 12 мм.

Капель при наклоне оболочки до 15 0 в любом направлении относительно нормального положения.

Инструмента, проволоки и твердых тел диаметром более 2,5 мм.

Дождь, падающий на оболочку под углом 60 0 от вертикали.

Проволоки, твердых тел размером более 1 мм.

Брызг, падающих на оболочку в любом направлении.

Пыли в количестве недостаточном для нарушения работы изделия.

Струй, выбрасываемых в любом направлении.

Защита от пыли полная (пыленепроницаемые).

Волн (вода при волнении не должна попасть внутрь).

При погружении в воду на короткое время.

При длительном погружении в воду.

Для обозначения степени защиты используется аббревиатура «IP». Например: IP54.

Применительно к электрическим аппаратам существуют следующие виды исполнения:

1. Защищенные IP21, IP22 (не ниже).

2. Брызгозащищенные, каплезащищенные IP23, IP24

3. Водозащищеные IP55, IP56

4. Пылезащищеные IP65, IP66

5. Закрытое IP44 – IP54, у этих аппаратов внутренние пространство изолированно от внешней среды

6. Герметичное IP67, IP68. Эти аппараты выполнены с особо плотной изоляцией от окружающей среды.

Климатическое исполнение электрических аппаратов определяется ГОСТ 15150-69. В соответствии с климатическими условиями обозначается следующими буквами: У (N) – умеренный климат, ХЛ (NF) – холодный климат, ТВ (TH) – тропический влажный климат, ТС (ТА) – тропический сухой климат, О (U) – все климатические районы, на суше, реках и озерах, М – умеренный морской климат, ОМ – все районы моря, В – все макроклиматические районы на суше и на море.

1. На открытом воздухе,

2. Помещения, где колебания температуры и влажности не существенно отличаются от колебаний на открытом воздухе,

3. Закрытые помещения с естественной вентиляцией без искусственного регулирования климатических условий. Отсутствуют воздействия песка и пыли, солнца и воды (дождь),

4. Помещения с искусственным регулированием климатических условий. Отсутствуют воздействия песка и пыли, солнца и воды (дождь), наружного воздуха,

5. Помещения с повышенной влажностью (длительное наличие воды или конденсированной влаги)

Выбор электрических аппаратов

Выбор электрических аппаратов представляет собой задачу, при решении которой должны учитываться:

  • коммутируемые электрическим аппаратом токи, напряжения и мощности;
  • параметры и характер нагрузки - активная, индуктивная, емкостная, низкого или высокого сопротивления и др.;
  • число коммутируемых цепей;
  • напряжения и токи цепей управления;
  • напряжение катушки электрического аппарата ;
  • режим работы аппарата - кратковременный, длительный, повторно-кратковременный;
  • условия работы аппарата - температура, влажность, давление, наличие вибрации и др.;
  • способы крепления аппарата;
  • экономические и массогабаритные показатели;
  • удобство сопряжения и электромагнитная совместимость с другими устройствами и аппаратами;
  • стойкость к электрическим, механическим и термическим перегрузкам;
  • климатическое исполнение и категория размещения;
  • степени зашиты IP,
  • требования техники безопасности;
  • высота над уровнем моря;
  • условия эксплуатации.

Р А З Д Е Л 2

Работа 2

ИЗУЧЕНИЕ КОНСТРУКЦИИ И ЗАЩИТНЫХ ХАРАКТЕРИСТИК ПРЕДОХРАНИТЕЛЕЙ

Цель работы

Изучить конструкцию, маркировку основных типов предохранителей с плавкой вставкой, применяемых для защиты электрических цепей и установок в сельскохозяйственном производстве.

Усвоить методику расчёта и выбора предохранителей.

Задание к работе

1. По методическим указаниям и набору предохранителей изучить конструкцию и маркировку плавких предохранителей.

2. По заданию преподавателя произвести расчёт плавкой вставки и выбрать тип предохранителя для электроустановки или распределительной сети.

Общие сведения

Предохранители – это коммутационные электротехнические изделия, используемые для защиты электрической сети от сверхтоков и токов короткого замыкания. Принцип действия предохранителей основан на разрушении специально предназначенных для этого токоведущих частей (плавких вставок) внутри самого устройства при протекании по ним тока, величина которого превышает определенное значение.

Плавкие вставки являются основным элементом любого предохранителя. После перегорания (отключения тока) они подлежат замене. Внутри плавкой вставки располагается плавкий элемент (именно он и перегорает), а также дугогасительное устройство. Плавкая вставка чаще всего изготавливается из фарфорового или фибрового корпуса и крепится в специальные токопроводящие части предохранителя. Если предохранитель предназначен на малые токи, то плавкая вставка для него может не иметь корпуса, т.е. быть бескорпусной. К основным характеристикам плавких ставок предохранителя можно отнести: номинальный ток, номинальное напряжение, отключающая способность.

Также к элементам предохранителя относятся:

– держатель плавкой вставки – съемный элемент, главное предназначение которого удерживать плавкую вставку;

– контакты плавкой вставки – часть предохранителя, которая обеспечивает электрическую связь между проводниками и контактами плавкой вставки;

– боек предохранителя – специальный элемент, задача которого при срабатывании предохранителя воздействовать на другие устройства и контакты самого предохранителя.

Все предохранители делятся на несколько десятков видов:

– по конструкции плавких вставок предохранители бывают разборные и неразборные. У разборных предохранителей можно заменять плавкую вставку после ее перегорания, у неразборных предохранителей это сделать не получится;



– по присутствию наполнителя. Бывают предохранители с наполнителем и без наполнителя;

– по конструкции изготовления плавких вставок. Различают предохранители с ножевыми, болтовыми и фланцевыми контактами;

– по корпусу плавкой вставки предохранители делятся на трубчатые и призматические. У первого вида предохранителей плавкая вставка имеет цилиндрическую форму, у второго вида – форму прямоугольного параллелепипеда;

– по виду плавких вставок в зависимости от диапазона токов отключения. Есть предохранители с отключающей способностью в полном диапазоне токов отключения – g и с отключающей способностью в части диапазона токов отключения – а;

– по быстродействию. Есть предохранители небыстродействующие (используются в большинстве случаев в трансформаторах, кабелях, электрических машинах) и быстродействующие (применяются в полупроводниковых приборах);

– по конструкции основания предохранители могут быть с калибровочным основанием (в таких предохранителях не удастся установить плавкую вставку, предназначенную для работы с большим, чем сам предохранитель, номинальным током) и с некалиброванным основанием (в такие предохранители можно установить плавкую вставку, номинальный ток которой больше номинального тока самого предохранителя);

– по напряжению предохранители делятся на низковольтные и высоковольтные;

– по количеству полюсов. Бывают одно-, двух-, трехполюсные предохранители;

– по наличию и отсутствию свободных контактов. Есть предохранители со свободными контактами и без них;

– по присутствию бойка и указателя срабатывания предохранители бывают – без бойка и без указателя, с указателем без бойка, с бойком без указателя, с указателем и бойком;

– по способу крепления проводников предохранители делятся на – с передним присоединением, с задним, с универсальным (и задним, и передним);



– по способу монтажа. Есть предохранители на собственном основании и без него.

Исторически сложилось так, что механическое исполнение корпусов предохранителей и их габаритные и присоединительные размеры различны в разных странах. Существуют четыре основных национальных стандарта на присоединительные размеры предохранителей: североамериканский, немецкий, британский и французский. Есть также ряд корпусов предохранителей, одинаковых для разных стран и не относящихся к национальным стандартам. Чаще всего такие корпуса относятся к стандартам фирмы – производителя, разработавшей конкретный тип прибора, который оказался удачным и закрепился на рынке. В последние десятилетия, в рамках процессов глобализации экономики, производители постепенно присоединяются к международной системе стандартов корпусов предохранителей для упрощения условий взаимозаменяемости приборов. При выборе следует стараться использовать предохранители международных стандартов: IEC 60127, IEC 60269, IEC 60282, IEC 60470, IEC60549, IEC 60644.

Необходимо отметить, что по виду плавких вставок в зависимости от диапазона токов отключения и быстродействия предохранители разделены на классы использования. При этом первая буква указывает функциональный класс, а вторая – подлежащий защите объект:

1-я буква:

a – защита с отключающей способностью в части диапазона (accompanied fuses): плавкие вставки предохранителей способные как минимум длительно пропускать токи, не превышающие указанного для них расчетного тока, и отключать токи определенной кратности относительно расчетного тока вплоть до расчетной отключающей способности;

g – защита с отключающей способностью во всем диапазоне (general purpose fuses): плавкие вставки предохранителей способные как минимум длительно пропускать токи, не превышающие указанного для них расчетного тока, и отключать токи от минимального тока выплавления и до расчетной отключающей способности.

2-я буква:

G – защита кабелей и проводов;

M – защита коммутационных аппаратов/двигателей;

R – защита полупроводников/тиристоров;

L – защита кабелей и проводов (в соответствии со старой, уже не действующей нормой DIN VDE);

Tr – защита трансформаторов.

Общий вид времятоковых характеристик плавких предохранителей основных категорий использования приведен на рис. 2.1.

Плавкие вставки со следующими классами использования обеспечивают:

gG (DIN VDE/МЭК) – защита кабелей и проводов во всем диапазоне;

aM (DIN VDE/МЭК) – защита коммутационных аппаратов в части диапазона;

aR (DIN VDE/МЭК) – защита полупроводников в части диапазона;

gR (DIN VDE/МЭК) – защита полупроводников во всем диапазоне;

gS (DIN VDE/МЭК) – защита полупроводников, а также кабелей и линий во всем диапазоне.

Предохранители с отключающей способностью во всем диапазоне (gG, gR, gS) надежно отключают как при токах КЗ, так и при перегрузках.

Предохранители с отключающей способностью в части диапазона (aM, aR) служат исключительно для защиты от короткого замыкания.

Для защиты установок на напряжение до 1000 В используют электрические, трубчатые и открытые (пластинчатые) предохранители.

Электрический предохранитель состоит из фарфорового корпуса и пробки с плавкой вставкой. Питающую линию присоединяют к контакту предохранителя, отходящую – к винтовой резьбе. При коротком замыкании или перегрузке плавкая вставка перегорает, и ток в цепи прекращается. Применяют следующие типы электрических предохранителей: Ц-14 на ток до 10 А и напряжение 250 В с прямоугольным основанием; Ц-27 на ток до 20 А и напряжением 500 В с прямоугольным или квадратным основанием и Ц-33 на ток до 60 А и напряжение 500 В с прямоугольным или квадратным основанием.

Например: электрические предохранители резьбовые серии ПРС предназначены для защиты от перегрузок и коротких замыканий электрооборудования и сетей. Номинальное напряжение предохранителей 380 В переменного тока частотой 50 или 60 Гц. Конструктивно предохранители ПРС (рис. 2.2) состоят из корпуса, плавкой вставки ПВД, головки, основания, крышки, центрального контакта.

Предохранители ПРС выпускаются на номинальные токи плавкой вставки от 6 до 100 А. В обозначении предохранителя указывается, какого он присоединения: ПРС-6-П – предохранитель на 6 А, переднего присоединения проводов; ПРС-6-З – предохранитель на 6А, заднего присоединения проводов.

Предохранители цилиндрические ПЦУ-6 и ПЦУ-20 с резьбовым цоколем Ц-27 и плавкими вставками на токи 1, 2, 4, 6, 10, 15, 20 ампер выпускаются в пластмассовом корпусе. Предохранители ПД имеют основание из фарфора, а ПДС – материал основания – стеатит. В бытовых условиях применяют автоматические пробочные предохранители, где защищаемая цепь восстанавливается кнопкой.

Трубчатые предохранители выпускают следующих типов: ПР-2, НПН и ПН-2. Предохранители ПР-2 (предохранитель разборный) предназначены для установки в сетях напряжением до 500 В и на токи 15, 60, 100, 200, 400, 600 и 1000 А.

В патроне предохранителя ПР-2 (рис. 2.3) плавкая вставка 5, прикрепляемая винтами 6 к контактным ножам 1, помещена в фибровую трубку 4, на которую насажены втулки 3 с резьбой. На них навинчены латунные колпачки 2, закрепляющие контактные ножи, которые входят в неподвижные пружинящие контакты, устанавливаемые на изоляционной плите.

Под действием электрической дуги, возникающей при перегорании предохранителя, внутренняя поверхность фибровой трубки разлагается и образуются газы, способствующие быстрому гашению дуги.

К закрытым предохранителям с мелкозернистным наполнителем относятся предохранители типа НПН, НПР, ПН2, ПН-Р, КП. У предохранителей типа НПН (наполненный предохранитель неразборный) трубка стеклянная. У остальных трубки фарфоровые. Предохранители типа НПН имеют цилиндрическую форму, ПН – прямоугольную.

Комплект предохранителя НПН состоит из: плавкой вставки – 1 шт; контакт-основания – 2 шт.

Предохранители НПН изготовляют на напряжение до 500В и токи от 15 до 60 А, предохранители ПН2 (предохранитель насыпной разборный) – на напряжение до 500 В и токи от 10 до 600 А. В насыпных предохранителях плавкие вставки, выполненные из нескольких параллельных медных или посеребренных проволок, помещены в закрытый фарфоровый патрон, заполненный кварцевым песком. Кварцевый песок способствует интенсивному охлаждению и деионизации газов, появляющихся при горении дуги. Так как трубки закрыты, то брызги расплавленного металла плавких вставок и ионизированные газы не выбрасываются наружу. Это уменьшает пожарную опасность и повышает безопасность обслуживания предохранителей. Предохранители с наполнителем так же, как и предохранители типа ПР, – токоограничивающие.

Пластинчатые открытые предохранители состоят из медных или латунных пластин – наконечников, в которые впаяны медные калиброванные проволоки. Наконечники с помощью болтов присоединяют к контактам на изоляторах.

Предохранители типа НПР – патрон закрытый разборный (фарфоровый) с наполнителем из кварцевого песка на номинальные токи до 400 А.

Предохранители ПД (ПДС) - 1, 2, 3, 4, 5 – с наполнителем для установки непосредственно на токоведущие шины на токи от 10 до 600 А.

Для защиты силовых вентилей полупроводниковых преобразователей средней и большой мощности при внешних и внутренних коротких замыканиях широко применяются быстродействующие плавкие предохранители, которые являются самыми дешёвыми средствами защиты. Они состоят из контактных ножей и плавкой вставки из серебряной фольги, помещенных в закрытый фарфоровый патрон.

Плавкая вставка таких предохранителей имеет узкие калиброванные перешейки, которые снабжены радиаторами из хорошо проводящего тепло керамического материала, посредством которых тепло отводится к корпусу предохранителя. Эти радиаторы служат также дугогасительными камерами с узкой щелью, что значительно улучшает гашение дуги, возникающей в области перешейка. Параллельно плавкой вставке установлен сигнальный патрон, блинкер которого сигнализирует о расплавлении плавкой вставки и, воздействуя на микровыключатель, замыкает сигнальные контакты.

Длительное время промышленностью выпускались два типа быстродействующих плавких предохранителей, предназначенных для защиты от токов короткого замыкания преобразователей с силовыми полупроводниковыми вентилями:

1) предохранители типа ПНБ-5 (рис. 2.4, а) для работы в цепях с номинальным напряжением до 660 В постоянного и переменного тока на номинальные токи 40, 63, 100, 160, 250, 315, 400, 500 и 630 А;

2) предохранители типа ПБВ для работы в цепях переменного тока с частотой 50 Гц номинальным напряжением 380 В на номинальные токи от 63 до 630 А.

гальваническим покрытием (высокая токопроводность и долговечность).

Корпус предохранителя сделан из высокопрочного ультрафарфора. Конструкция предохранителя позволяет применять дополнительные устройства – указатель срабатывания, свободный контакт.

Структура условного обозначения предохранителей ПНБ7-400/100-Х1-Х2:

ПНБ-7 – обозначение серии;

400 – номинальное напряжение, В;

100 – номинальный ток;

Х1 – условное обозначение вида монтажа и вида присоединения проводников к выводам: 2 – на собственном изоляционном основании с контактами основания; 5 – на основаниях комплектных устройств с контактами основания; 8 – без основания, без контактов (плавкая вставка);

Х2 – условное обозначение наличия указателя срабатывания: 0 – без сигнализации; 1 – с бойком и свободным контактом; 2 – с указателем срабатывания; 3 – с бойком.

Плавкие предохранители промышленного назначения серии ПП предназначены для защиты электрооборудования промышленных установок и электрических цепей от перегрузок и коротких замыканий.

Выпускаются предохранители данной серии следующих основных типов: ПП17, ПП32, ПП57, ПП60С. Предохранители изготавливают с указателем срабатывания, с указателем срабатывания и свободным контактом или без сигнализации. В зависимости от типа предохранители рассчитаны на напряжение до 690 В и на номинальные токи от 20 А до 1000 А. Конструктивные особенности позволяют устанавливать свободные контакты замыкающие или размыкающие, а также способ монтажа – на собственном основании, на основании комплектных устройств, на проводниках комплектных устройств.

Структура обозначения предохранителей типа ПП17 и ПП32 – Х1Х2 – Х3 – Х4 – ХХХХ:

1) Х1Х2 – условное обозначение габарита (номинальный ток, А): 31 –100А; 35 – 250А; 37 – 400А; 39 – 630А.

2) Х3 – условное обозначение вида монтажа и вида присоединения: 2 – на собственном основании, 5 – на основании комплектных устройств, 7 – на проводниках комплектных устройств (болтовое присоединение), 8 – без основания (плавкая вставка), 9 – без основания (плавкая вставка в части размеров унифицирована с предохранителями ПН2-100 и ПН2-250).

3) Х4 – условное обозначение наличия указателя срабатывания, бойка, свободного контакта: 0 – без сигнализации, 1 – с бойком и свободным контактом, 2 – с указателем срабатывания, 3 – с бойком.

4) ХХХХ – климатическое исполнение: УХЛ, Т и категория размещения 2, 3.

В настоящее время полупроводниковые преобразователи оснащаются предохранителями серии ПП57 (рис. 2.5, а) и ПП60С (рис. 2.5, б).

Первые предназначенные для защиты преобразовательных агрегатов при внутренних коротких замыканиях переменного и постоянного тока при напряжениях 220 – 2000 В на токи 100, 250, 400, 630 и 800 А. Вторые – при внутренних коротких замыканиях переменного тока при напряжениях 690 В на токи 400, 630, 800 и 1000 А.

Структура обозначения предохранителей типа ПП57 – ABCD – EF:

Буквы ПП – предохранитель плавкий;

Двузначное число 57 – условный номер серии;

А – двузначное число – условное обозначение номинального тока предохранителя;

В – цифра – условное обозначение номинального напряжения предохранителя;

С – цифра – условное обозначение по способу монтажа и виду присоединения проводников к выводам предохранителя (например, 7 – на проводниках преобразовательного устройства – болтовое с уголковыми выводами);

D – цифра – условное обозначение наличия указателя срабатывания и контакта вспомогательной цепи: 0 – без указателя срабатывания, без контакта вспомогательной цепи; 1 – с указателем срабатывания, с контактом вспомогательной цепи; 2 – с указателем срабатывания, без контакта вспомогательной цепи;

Е – буква – условное обозначение климатического исполнения;

Пример условного обозначения предохранителя: ПП57-37971-УЗ.

Предохранители плавкие ППН предназначаются для защиты кабельных линий и промышленных электроустановок от токов перегрузки и короткого замыкания. Предохранители применяются в электрических сетях переменного тока частотой 50 Гц с напряжением до 660 В и устанавливаются в низковольтные комплектные устройства, например, в распределительные панели ЩО-70, вводно-распределительные устройства ВРУ1, шкафы распределительные силовые ШРС1 и т.п.

Преимущества предохранителей ППН: 1) корпус предохранителя и основание держателя изготовлены из керамики; 2) контакты предохранителя и держателя изготовлены из электротехнической меди; 3) корпус предохранителей засыпан мелкодисперсным кварцевым песком; 4) габаритные размеры предохранителей на ~15% меньше предохранителей ПН-2; 5) потери мощности на ~40% меньше, чем у предохранителей ПН-2; 6) наличие индикатора срабатывания; 7) предохранители монтируются и демонтируются с помощью универсального съемника.

Особенности конструкции предохранителей серии ППН приведены на рис. 2.6 .

Предохранители плавкие серии ППНИ (рис. 2.7) общего применения предназначены для защиты промышленных электроустановок и кабельных линий от перегрузки и короткого замыкания и выпускаются на номинальные токи от 2 до 630 А.

Используются в однофазных и трехфазных сетях напряжением до 660 В частоты 50 Гц. Области применения предохранителей ППНИ: вводно-распределительные устройства (ВРУ); шкафы и пункты распределительные (ШРС, ШР, ПР); оборудование трансформаторных подстанций (КСО, ЩО); шкафы низкого напряжения (ШР-НН); шкафы и ящики управления.

Вследствие использования качественных современных материалов и новой конструкции, в предохранителях ППНИ снижены потери мощности по сравнению с предохранителями ПН-2. Данные, представленные в табл. 2.1, показывают экономичность предохранителей ППНИ по сравнению с ПН-2.


Таблица 2.1

Пример выбора предохранителя

Для вентильной группы выпрямителя в шестипульсной мостовой схеме, чей расчетный постоянный ток составляет I d = 850 А, необходимо выбрать плавкие вставки для предохранителя в ответвлениях. Выбор предохранителя приведен для указанных выше четырех типичных видов нагрузки.

Параметры вентильной группы выпрямителя:

– напряжение питающей сети

U N = 3 АС 50 Гц 400 В,

– восстанавливающее напряжение

U W = 360 В = U N ·0,9 (при опрокидывании инвертора,

– тиристор Т 508N (фирмы Eupec)

интеграл предельной нагрузки ∫I²dt = 320·103 А2с (10 мс, холодный),

– предохранительные вставки с естественным охлаждением, температура окружающей среды tu = +35°С

– поперечное сечение присоединения для предохранительных вставок, медь: 160 мм 2 ,

– эффективное значение тока ответвления (рабочий ток предохранителя) I La = I d ·0,58.

Постоянный ток I d = 850 А

I eff =I La = I d ·0,58 = 493 А

Полный джоулевый интеграл

∫I²·tА = 360·103 · 0,53 = 191·103 А2с

В соответствии с номограммами, приведенными в , необходимо применить следующие поправочные коэффициенты:

k u = 1,02 (tu = +35°С),

Требуемый расчетный ток I Р предохранителя

I Р = I La ·(1/ k u · k q · k l · k i · k WL) = 493 ·(1/1,02·0,91·1,0·1,0·1,0) = 531 А

Проверка: 560 А > 531 А

Неизвестная переменная нагрузка с известным максимальным током I МАКС

I eff = I МАКС = 435 А

Полный джоулевый интеграл

∫I²·tА = 260·103 ··0,53 = 138·103 А2с

Контрольное поперечное сечение : 400 мм 2

k u = 1,02 (tu = +35°С),

k q = 0,91 (поперечное сечение присоединения с обеих сторон 40% от контрольного поперечного сечения),

k l = 1,0 (угол отсечки тока l=120°),

k i = 1,0 (интенсивное воздушное охлаждение отсутствует)

Требуемый расчетный ток IР предохранителя

I Р = ILa ·(1/ k u · k q · k l · k i · k WL) = 435 ·(1/1,02·0,91·1,0·1,0·1,0) = 469 А

Проверка: 560 А > 469 А

Переменная нагрузка с известным нагрузочным циклом.

Постоянный ток:

I d1 = 1200 А, t 1 = 20 с (рис. 2.14),

I d2 = 500 А, t 2 = 240 с,

I d3 = 1000 А, t 3 = 10 с,

I d4 = 0 А, t4 = 60 с.

Ток, протекающий через предохранитель:

I La1 = 1200 · 0,58 = 696 А (рис. 2.14),

I La2 = 500 · 0,58 = 290 А,

I La3 = 1000 · 0,58 = 580 А,

I La4 = 0 · 0,58 = 0 А.

Эффективное значение рабочего тока


Полный джоулевый интеграл

∫I²·tА = 175·103 ·0,53 = 93·103 А2с

Контрольное поперечное сечение : 320 мм 2

Применяем следующие поправочные коэффициенты:

k u = 1,02 (tu = +35°С),

k q = 0,94 (поперечное сечение присоединения с обеих сторон 50% от контрольного поперечного сечения),

k l = 1,0 (угол отсечки тока l=120°),

k i = 1,0 (интенсивное воздушное охлаждение отсутствует)

I Р = I eff ·(1/ k u · k q · k l · k i · k WL) = 317 ·(1/1,02·0,94·1,0·1,0·1,0) = 331 А

Проверка: 450 А > 331 А

I Р / = k u · k q · k l · k i · k WL · I Р =1,02·0,94·1,0·1,0·1,0·450 = 431 А

2. Проверка допустимой продолжительности перегрузки блоками тока, которые превышают допустимый рабочий ток предохранителя I Р / .

V = I eff / I Р / = 317/431= 0,74

Из кривой k RW1 = f (V) (рис. 11) определяем величину k RW1 для V = 0,74, имеем k RW1 = 0,2

Определяем сокращенную продолжительность допустимой нагрузки t SС для соответствующего блок тока по выражению:

t SС = k RW1 · t S , (2.15)

где t S – время плавления вставки для токов I La1 и I La3 , протекающих через предохранитель (из времятоковой характеристики для3NE3 333) .

Имеем: t S1 = 230 с, t S3 = 1200 с.

Тогда t S1С = k RW1 · t S1 = 0,2·230 = 46 с,

t S3С = k RW1 · t S3 = 0,2·1200 = 240 с

Проверка: t S1С = 46 с > t 1 = 20 с

t S3С = 240 с > t 3 = 10 с

Случайная ударная нагрузка из предварительной нагрузки с неизвестной последовательностью ударных импульсов

I eff = I vor , (2.16)

где I vor – ток предварительной нагрузки (рис. 2.15),

I Stoss – ток перегрузки,

t Stoss – продолжительность перегрузки (t Stoss = 8 с).

Постоянный ток: Ток, протекающий через предохранитель:

I dvor = 700 А I vor = I dvor · 0,58 = 406 А

I dStoss = 1750 А I Stoss = I dStoss · 0,58 = 1015 А

Периодичность и продолжительность ударных импульсов нагрузки должна удовлетворять следующим условиям – t pausa ³ 3· t Stoss и t pausa ³ 5 мин.

Полный джоулевый интеграл

∫I²·tА = 360·103 ·0,53 = 191·103 А2с

Контрольное поперечное сечение : 400 мм 2

Применяем следующие поправочные коэффициенты:

k u = 1,02 (t u = +35°С),

k q = 0,91 (поперечное сечение присоединения с обеих сторон 40% от контрольного поперечного сечения),

k l = 1,0 (угол отсечки тока l=120°),

k i = 1,0 (интенсивное воздушное охлаждение отсутствует)

1. Требуемый расчетный ток I Р предохранителя

I Р = I vor ·(1/ k u · k q · k l · k i · k WL) = 406 ·(1/1,02·0,91·1,0·1,0·1,0) = 437 А

Проверка: 450 А > 437 А

Допустимый рабочий ток I Р / выбранной предохранительной вставки:

I Р / = k u · k q · k l · k i · k WL · I Р =1,02·0,91·1,0·1,0·1,0·560 = 520 А

2. Проверка допустимой продолжительности перегрузки пиковым током I Stoss .

Предварительный коэффициент нагрузки:

V = I vor /I Р / = 406/520= 0,78

Из кривой k RW1 = f (V) (рис. 2.11) определяем величину k RW1 для V = 0,78, имеем k RW1 = 0,18

Определяем сокращенную продолжительность допустимой нагрузки t SС для ударного тока по выражению:

t SС = k RW1 · t S , (2.17)

где t S – время плавления вставки для ударного тока I Stoss = 1015 А, протекающих через предохранитель (из времятоковой характеристики для3NE3 333) .

Имеем: t S = 110 с.

Тогда t SС = k RW1 · tS = 0,18·110 = 19,8 с

Проверка: t SС = 19,8 с > t Stoss = 8 с

1. Наименование и цель работы.

2. Основные типы предохранителей, применяемые для защиты электроустановок и электрических цепей.

3. Расчёт и выбор предохранителя по индивидуальному заданию.

4. Ответы на контрольные вопросы.

Контрольные вопросы

1. По каким конструктивным признакам различаются плавкие предохранители?

2. Дайте расшифровку обозначения плавких предохранителей.

3. Опишите конструкцию предохранителя ПР-2.

4. Опишите конструкцию предохранителя НПР.

5. Опишите конструкцию предохранителя ПНБ.

6. В чем отличие предохранителей ПН от ПНБ-7?

7. Область применения предохранителей ПП57 и ПП60С.

8. Область применения предохранителей ППНИ.

9. В чем отличие предохранителей ППНИ от ПН-2?

10. Как рассчитывают ток плавкой вставки для различной нагрузки?

11. Что такое селективность защиты?

12. Что такое времятоковая характеристика предохранителя?

13. Какие преимущества у предохранителей типа ППНИ перед другими типами предохранителей?

14. Как обеспечить селективность последовательно включенных плавких вставок?

15. Как проверяется соприкосновение контактов ножей предохранителя с губками стоек?

Библиографический список

1. Правила устройства электроустановок [Текст]: Все действующие разделы ПУЭ-6 и ПУЭ-7. Новосибирск: Норматика, 2013. – 464 с., ил.

2. Монтаж электрооборудования и средств автоматизации: учебник для ВУЗов / И.Р. Владыкин, А.П. Коломиец, Н.П. Кондратьева, С.И. Юран. – М.: Изд-во ""КолосС"", 2007.

3. Сибикин Ю.Д. Монтаж, эксплуатация и ремонт электрооборудования промышленных предприятий и установок: Учеб. пособие для проф. учеб. заведений / Ю.Д. Сибикин, М.Ю. Сибикин. – М.: Высш. шк., 2003.

4. Акимова Н.А. Монтаж, техническая эксплуатация и ремонт электрического и электромеханического оборудования: учеб. пособие / Н.А. Акимова, Н.Ф. Котеленец, Н.И. Сентюрихин; под ред. Н.Ф. Котеленца. – 3-е изд., стереотип. – М.: Академия, 2005

5. Костенко Е.М. Монтаж, техническое обслуживание и ремонт промышленного и бытового электрооборудования: практ. пособие для электромонтера / Е.М. Костенко. – М.: Изд-во НЦ ЭНАС, 2005.

6. EKF electrotechnica [Официальный сайт] Url: http://ekfgroup.com/produktsiya (дата обращения 01 сентября 2014 г.).

7. КЭАЗ – Курский электроаппаратный завод [Официальный сайт] Url: http://keaz.ru (дата обращения 01 сентября 2014 г.).

8. IEK – Интер электро комплект [Официальный сайт] Url: http://www.iek.ru (дата обращения 01 сентября 2014 г.).

9. Siemens – Электротехническая продукция [Официальный сайт] Url: http://electrosiemens.ru (дата обращения 01 сентября 2014 г.).

Р А З Д Е Л 2

ЭЛЕКТРИЧЕСКИЕ АППАРАТЫ НИЗКОГО НАПРЯЖЕНИЯ

Страница 1 из 75

В книге изложены основы конструирования, расчета, испытания, выбора коммутационной аппаратуры распределительных устройств низкого напряжения - автоматических и неавтоматических выключателей и предохранителей; кроме того, описаны основные конструкции.

Книга предназначена для инженеров-электриков, занимающихся конструированием и исследованием аппаратуры, проектированием электротехнических установок и эксплуатацией их.

Кузнецов Ростислав Сергеевич, Аппараты распределительных устройств низкого напряжения, 1962.

ВВЕДЕНИЕ

Электрическая энергия, вырабатываемая генераторами на центральных электрических станциях, передается на большие расстояния многочисленным приемникам - двигателям, нагревательным, осветительным и подобным устройствам. Распределение энергии между приемниками и управление работой источников энергии, линий передачи и приемников осуществляются с помощью четырех групп электрических аппаратов, существенно отличающихся по назначению и конструкции.

К первой группе относятся аппараты, которые служат преимущественно для включения и отключения главных цепей в системах, генерирующих электрическую энергию и передающих ее потребителю. Они называются коммутационными аппаратами распределительных устройств. Эти аппараты производят включение или отключение цепи при воздействии обслуживающего персонала (неавтоматически) или без этого воздействия (автоматически). У некоторых аппаратов автоматическое срабатывание осуществляется при воздействии на их вспомогательную электрическую цепь, замыкаемую или размыкаемую с помощью других автоматических аппаратов - реле.

Ко второй группе относятся реле и регуляторы, осуществляющие защиту и управление работой генераторов, трансформаторов, линий передачи и приемников путем воздействия на разные вспомогательные цепи.

К третьей группе относятся аппараты управления, осуществляющие управление работой приемников электрической энергии, например: пуск, регулирование числа оборотов, торможение, реверсирование двигателей. К аппаратуре управления относятся, например: контакторы, пускатели, контроллеры, командоаппараты, реостаты, реле, осуществляющие защиту и управление работой электропривода.

К четвертой группе относятся аппараты, специально предназначенные для автоматизации технологических процессов. К ним относятся датчики, которые создают в цепях управления сигналы, соответствующие определенным параметрам протекающего технологического процесса, а также аппараты, которые преобразуют эти сигналы, вырабатывают, осуществляют, контролируют программу, определяющую желательный ход технологического процесса, и направляют сигналы аппаратам управления, которые управляют электродвигателями исполнительных механизмов.

В настоящей книге излагаются основные сведения об устройстве, проектировании и эксплуатации коммутационной аппаратуры распределительных устройств, которая обычно устанавливается в сетях переменного тока на напряжение до 660 в и постоянного тока - до 440 в. Некоторые аппараты рассчитываются на напряжение более 440 в постоянного тока. Поэтому, строго говоря, они не всегда могут быть названы низковольтными; однако по конструкции аппараты, предназначенные для сетей низкого напряжения (до 380 в с заземленной нейтралью), мало чем отличаются от аппаратов на несколько большее напряжение. Коммутационная аппаратура переменного тока на напряжение 3 кВ и выше в настоящей книге не рассматривается.

Книга охватывает главным образом аппаратуру общего применения. Более подробные сведения о специальной аппаратуре можно найти в соответствующих пособиях.

Глава первая

НАЗНАЧЕНИЕ И КЛАССИФИКАЦИЯ АППАРАТОВ И ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К НИМ

1-1. НАЗНАЧЕНИЕ И КЛАССИФИКАЦИЯ

Коммутационные аппараты распределительных устройств выполняют две функции:

неавтоматическое включение и отключение электрических цепей, которые производятся, когда надо подать или снять питание электроэнергией участка сети;

автоматическое отключение электрических цепей в случае появления в них каких-либо ненормальных явлений, угрожающих безопасности обслуживающего персонала или сохранности установки (например, в случае коротких замыканий). Иногда аппараты осуществляют автоматическое включение резервного источника энергии или автоматическое повторное включение после аварийного отключения.

Различают три группы аппаратов распределительных устройств:

автоматические выключатели или сокращенно автоматы;

плавкие предохранители или сокращенно предохранители;

неавтоматические выключатели.

Иногда указанные аппараты устанавливаются вместе с аппаратурой управления ib устройствах для управления электроприводом (станциях управления, магнитных пускателях и т. д.).

Автоматические выключатели полностью выполняют указанные выше первую и вторую функции: они служат как для неавтоматической коммутации, так и для автоматической коммутации при всевозможных ненормальных условиях (сверхток, перенапряжение, обратный ток, исчезновение напряжения и т. д.).

Плавкие предохранители частично выполняют вторую функцию: они только отключают цепь и только при одном виде ненормального режима - при сверхтоке. Их особенностью является плавление металла при больших токах, которое ведет к разрыву цепи тока.

Неавтоматические выключатели выполняют только первую из вышеуказанных функций: неавтоматическое включение и отключение цепей.

Распределительные устройства - это группа коммутационных аппаратов, электрически соединенных между собой и являющихся одним конструктивным целым. Выполняемые ими функции определяются составом входящих в них аппаратов. Кроме основной коммутационной аппаратуры, в распределительных устройствах могут устанавливаться также измерительные приборы, реостаты, реле, регуляторы, сигнальные аппараты и т. д.

Распределительные устройства устанавливаются в следующих местах:

у источника энергии (на вторичной стороне понизительных трансформаторов, у генераторов или ртутных выпрямителей);

в местах, где требуется осуществить распределение энергии по нескольким направлениям;

на ответвлениях к отдельным приемникам энергии.

Каждая из вышеуказанных групп аппаратов в зависимости от конструктивных принципов, положенных в их основу, показателей, характеризующих их работу при ненормальных режимах, и защищенности от воздействия внешней среды подразделяется на ряд подгрупп. Кроме того, все аппараты различаются по:

роду тока и частоте переменного тока аппарата и его катушек;

номинальному напряжению аппарата и шунтовых катушек его электромагнитов;

номинальному току аппарата, сериесных катушек его электромагнитов и его нагревателей;

числу коммутируемых цепей.

Аппараты исполняются на частоту до 10 000 Гц. Наиболее распространенным является исполнение аппаратов на номинальную частоту переменного тока 50 Гц. Шунтовые катушки электромагнитов исполняются на частоту не выше 60 Гц.

Аппараты выполняются для работы при номинальном напряжении сети переменного тока 127, 220, 380, 500 и 660 в и постоянного тока 24 - 32 в, 110, 220, 440, 825, 1 650 и 3 300 в. Напряжение 500 в переменного тока встречается изредка и только >в старых установках. В промышленности наиболее распространено напряжение 380 в. Сети с напряжением 660 в в последнее время применены в шахтах; предполагается их применение на химических и других предприятиях, где приемники энергии рассредоточены. В настоящее время напряжение 660 в пока еще не входит в число стандартных напряжений, предусмотренных ГОСТ, но предполагается его ввести в ближайшее время.

Главные цепи аппаратов обычно рассчитываются на напряжения 220 и 380 вив последнее время 660 в переменного тока и 30, 220, 440, 825, 1 650 и 3 300 в постоянного тока. Шунтовые катушки аппаратов исполняются на разные стандартные и нестандартные напряжения, но обычно не более 380 в переменного и 220 в постоянного тока. Катушки работают ненадежно при более высоких напряжениях.

Аппараты исполняются на разные номинальные токи от 6 до 25 000 а. Сериесные катушки аппаратов исполняются на номинальные токи от 0,05 до 25 000 а.

Аппараты подразделяются на одно-, двух- и трех- полюсные, в соответствии с числом проводов в линии. Изредка они имеют и большее число полюсов.

На всех этапах производства, передачи, распределения и потребления электрической энергии практически во всех отраслях народного хозяйства важную роль играют электрические аппараты.

Электрические аппараты (контакторы, пускатели, электромагниты) входят в состав автоматических, полуавтоматических и ручных систем управления электроэнергетическими установками, электроприводами, устройствами электрического освещения, электротехнологическими установками и т. д. Их применяют для управления пуском, регулирования частоты вращения и осуществления электрического торможения электродвигателей. С помощью электрических аппаратов производится регулирование токов и напряжений генераторов. Они осуществляют функции контроля и защиты установок, потребляющих электроэнергию.

Таким образом, использование электромеханических устройств позволяет управлять по заданной программе работой электрических и неэлектрических объектов, а также защищать эти объекты от нежелательных режимов - перегрузок, перенапряжений, недопустимо больших токов и т. д.

Многие электрические аппараты предназначаются для выполнения какой-либо одной функции в системе управления или защиты, однако имеются и многофункциональные аппараты.
Работа электромеханических устройств в системах автоматики основывается на ряде физических явлений: взаимодействии ферромагнитных тел в магнитном поле, силовом взаимодействии проводника с током и магнитного поля, возникновении ЭДС в катушках и вихревых токов в массивных телах из электропроводящего материала при появлении переменного магнитного поля, тепловом действии электрического тока и др.

Основными частями электрических аппаратов являются

  • электрические контакты (неподвижные и подвижные, главные и вспомогательные),
  • механический или электромагнитный привод контактной группы (приведение в соприкосновение и прижатие подвижных и неподвижных контактов),
  • рукоятки (кнопки) управления и рабочие обмотки.
    Электрический аппарат срабатывает, т. е. осуществляет замыкание и размыкание контактов или соединение подвижной и неподвижной частей электромагнитного механизма, под воздействием:

1) обслуживающего персонала, нажимающего на рукоятки (кнопки) управления; в этом случае аппарат называют ручным или полуавтоматическим;
2) электрических величин, характеризующих работу контролируемого (управляемого) объекта, изменяющих или на рабочих обмотках; в этом случае аппарат называют автоматическим.

В зависимости от функций, которые должен обеспечить аппарат, к нему могут предъявляться различные требования, но главными требованиями являются надежность и точность работы: надежность соединения контактов, малое электрическое сопротивление в месте соединения контактов, точность зависимости момента срабатывания от значения управляющего тока или напряжения.

По назначению различают следующие электрические аппараты

1) коммутационые (разъединители, выключатели, переключатели);
2) защитные, основным назначением которых является защита электрических цепей от недопустимо больших токов, перенапряжений, снижения и х д. (предохранители, реле защиты);
3) пускорегулирующие, предназначенные для управления электроприводами и другими промышленными потребителями электроэнергии (контакторы, пускатели, реле управления);
4) контролирующие и регулирующие, предназначенные для контроля и поддержания в заданном диапазоне основных параметров процесса (датчики и реле);
5) электромагниты (силовые), служащие для удерживания или
перемещения объектов в производственном либо управленческом
процессе.

В данной главе рассматриваются электрические аппараты (реле, пускатели, контакторы и электромагниты) и некоторые схемы управления и регулирования, использующие электромеханические устройства.

Прежде всего, рассмотрим особенности работы электрических контактов и работу электромагнитного механизма - привода контактной группы электрических аппаратов.